
Real Time Physics
Class Notes

Matthias Müller, NVIDIA
Jos Stam, Autodesk

Doug James, Cornell University
Nils Thürey, ETH Zurich

Contents

1 Introduction 5
1.1 Real-time vs. Off-line Physics . 5
1.2 Biographies of Authors in Alphabetical Order 6
1.3 Structure of the Class Notes . 7

2 Introduction to Solids 8

3 Mass Spring Systems 10
3.1 Physical Formulation . 11
3.2 Simulation . 11
3.3 Runge-Kutta Integration . 13
3.4 Verlet Integration . 14
3.5 Implicit Integration . 15

3.5.1 Newton-Raphson Solver . 16
3.6 Mesh Creation . 17
3.7 Collision Detection . 19
3.8 Collision Response . 19

4 The Finite Element Method 21
4.1 Continuum Mechanics . 22

4.1.1 Strain . 23
4.1.2 Strain Examples . 24
4.1.3 Stress . 25
4.1.4 Constitutive Laws . 25
4.1.5 Equation of Motion . 26

4.2 Finite Element Discretization . 27
4.2.1 Constant Strain Tetrahedral Meshes 28
4.2.2 Linear FEM . 30

4.3 Warped Stiffness . 32
4.3.1 Extraction of Rotation . 32
4.3.2 Determining Element Rotation . 34

5 Position Based Dynamics 36
5.1 Position Based Simulation . 37
5.2 The System to be solved . 38

2

CONTENTS 3

5.3 The Non-Linear Gauss-Seidel Solver . 39
5.4 Constraint Examples . 40

5.4.1 Stretching . 40
5.4.2 Bending . 40
5.4.3 Triangle Collisions . 41
5.4.4 Volume Conservation . 41
5.4.5 Shape Matching . 42

6 Rigid Body Simulation 45
6.1 Linear Motion . 46
6.2 Angular Motion . 46
6.3 Collision handling . 49
6.4 Resting Contacts . 50
6.5 Dynamic and Static Friction . 51
6.6 Real Time Simulation using a Gauss-Seidel Solver 52

7 Reduced-order deformable models 53

8 User Interaction and Control 54

9 Introduction to Fluids 55

10 Grid Based Fluid Simulation 57
10.1 Navier-Stokes Equations . 57
10.2 Lattice Boltzmann Methods . 59
10.3 The Basic Algorithm . 59
10.4 Implementation . 62
10.5 Stability . 65

11 Shallow Water Equations 67
11.1 Introduction . 67
11.2 A basic Solver . 68
11.3 Boundary Conditions . 70

I Appendix 76

A Derivation of the Shallow Water Equations 77
A.1 Integral Form . 77
A.2 Differential Form . 81

4
Real Time Physics

Class Notes

Chapter 1

Introduction

Physically based simulation is a significant and active research field in computer graphics.
It has emerged in the late eighties out of the need to make animations more physically plau-
sible and to free the animator from explicitly specifying the motion of complex passively
moving objects. In the early days, quite simple approaches were used to model physical
behavior such as mass-spring networks or particle systems. Later, more and more sophis-
ticated models borrowed from computational sciences were adopted. The computational
sciences appeared decades before computer graphics with the goal of replacing real world
experiments with simulations on computers. In contrast, the aim of using physical simu-
lations in graphics was, and still is, the reproduction of the visual properties of physical
processes for special effects in commercials and movies. Computer generated special ef-
fects have replaced earlier methods such as stop-motion frame-by-frame animation and offer
almost unlimited possibilities.

Meanwhile, the rapid growth of the computational power of CPUs and GPUs in recent
years has enabled real time simulation of physical effects. This possibility has opened
the door to an entirely new world, a world in which the user can interact with the virtual
physical environment. Real time physical simulations have become one of the main next-
generation features of computer games. Allowing user interaction with physical simulations
also poses new challenging research problems. In this class we address such problems and
present basic as well as state-of-the-art methods for physically based simulation in real time.

1.1 Real-time vs. Off-line Physics

In off-line physical simulation, the top concern is visual quality. Computational efficiency is
important because the simulations are typically done in high resolution using fine grids and
large numbers of objects but performance is clearly not as important as the quality of the
output. Often, farms of computers work for hours to produce a short sequence of a movie.
Because off-line simulations are predictable, it is possible to re-run the process, adapt the
time step in case of numerical instabilities or change parameters if the outcome does not
meet the specifications or expectations.

In contrast, interactive systems run at a fixed frame rate, typically between 30 and 60
Hertz to avoid jerking and to guarantee a smooth and experience. This leaves between 15
and 30 milliseconds per time step for physical simulations. In games, the main part of this

5

6
Real Time Physics

Class Notes

time budget is used for the core features, e.g. the graphics or artificial intelligence com-
putations. Thus, only a few milliseconds remain for physics. Staying within this limit is a
must. The resolution and visual quality have to be adjusted to meet that constraint. Because
of these specific requirements, methods used in off-line simulations cannot be used one to
one in real time applications. Simply reducing the resolution often yields blobby results
and removes all the interesting detail. In computer games and in interactive environments it
is also absolutely essential that simulations are unconditionally stable, i.e. stable under all
circumstances. In contrast to off-line simulations, the outcome of interactive scenarios is
non-predictable. In addition non-physical scenarios are common such as kinematic actors
which move over long distances in a single time step, interpenetrating shapes or huge force
fields acting on the objects in the scene.

Out of the need for specialized solutions for interactive environments emerged the new
research field of real-time physically-based simulations in computer graphics. The lecturers
of this class have made central contributions in this field. In this class, each lecturer presents
core ideas and state-of-the-art methods in his own field.

1.2 Biographies of Authors in Alphabetical Order

• Doug James holds three degrees in applied mathematics, including a Ph.D. from the
University of British Columbia in 2001. In 2002 he joined the School of Computer
Science at Carnegie Mellon University as an Assistant Professor, then in 2006 he be-
came an Associate Professor of Computer Science at Cornell University. His research
interests are physically based animation, computational geometry, scientific comput-
ing, reduced-order modeling, and multi-sensory digital physics (including physics-
based sound and haptic force-feedback rendering). He is a National Science Founda-
tion CAREER awardee, and a fellow of the Alfred P. Sloan Foundation.

• Matthias Müller received his Ph.D. on atomistic simulation of dense polymer sys-
tems in 1999 from ETH Zurich. During his post-doc with the MIT Computer Graph-
ics Group 1999-2001 he changed fields to macroscopic physically-based simulations.
He has published papers on particle-based water simulation and visualization, Finite
Element-based soft bodies, cloth and fracture simulation. In 2002 he co-founded
the game physics middleware company NovodeX. NovodeX was acquired in 2004
by AGEIA where he was head of research and responsible for the extension of the
physics simulation library PhysX by innovative new features. He has been head of
the PhysX research team of nVidia since the acquisition in 2008.

• Jos Stam received dual BSc degrees in Computer Science and Mathematics from the
University of Geneva. He got a MSc and Phd in Computer Science from the Univer-
sity of Toronto. After a postdoc in France and Finland he joined Alias—wavefront
(now Autodesk). Stam’s research spans several areas of computer graphics: natural
phenomena, physics-based simulation, rendering and surface modeling. He has pub-
lished papers in all of these. He has also participated in seven SIGGRAPH courses in
these areas. He received the SIGGRAPH Technical Achievement Award and has two
Academy Awards for his contributions to the film industry.

CHAPTER 1. INTRODUCTION 7

• Nils Thuerey is a post-doctoral researcher at the Computer Graphics Laboratory at
ETH Zurich, working together with Prof. Markus Gross. In March 2007 he received
his Phd (summa cum laude) in computer science from the University of Erlangen-
Nuremberg. He has worked in the field of high-performance fluid simulations with
free surfaces using, among others, lattice Boltzmannn methods. In addition, he has
worked on the topic of real-time fluid simulations using height-field approaches, such
as the shallow water equations, together with the research group of AGEIA.

1.3 Structure of the Class Notes

The notes are divided into three parts. In the first part various real time methods for the
simulation of solid rigid and deformable objects are presented. In addition, multiple ways
to represent solids in simulations are discussed, such as particle systems, finite element
meshes or rigid bodies. The subject of the second part are fluids, i.e. liquids and gases.
Simulation methods can be split into three main groups, 3-dimensional grid-based methods,
2.5-dimensional height field representations and particle based techniques. The last part
discusses methods for handling interactions between objects of different types.

Chapter 2

Introduction to Solids

For physically-based simulation, solid objects are typically divided into three main
groups: Rigid bodies, soft bodies and cloth. From the point of view of the underlying
physics, there is no such distinction. Completely rigid bodies do not exist in nature, every
object is deformable to some extent. Cloth is a general three-dimensional soft body as well
since it has a certain thickness. However, from an algorithmic and simulation point of view,
it makes sense to handle those three types separately. The assumption that objects made of
stone are infinitely rigid produces no visual artifacts but simplifies the handling and simu-
lation of such objects significantly. Also, simulating cloth as a 2d rather than a 3d object
reduces simulation time and memory consumption.

There is a large body of work concerning the simulation of solid objects in computer
graphics. We refer the interested reader to the two surveys [GM97] and [NMK+05]. Since
the early work of Terzopoulos and others [TPBF87] in the 80’s, many techniques have been
proposed to simulate solid objects. In the early days physical simulations were typically
done off-line.

Because a single rigid body can be represented by just a few quantities, simulation of
small sets of interacting rigid bodies was possible in real-time in the 80’s already ([Hah88]).
One of the first systems that made real-time interaction with deformable objects possible
was ArtDefo described in [JP99]. The system made use of the effective method of model
reduction in connection with the boundary element method (BEM) to speed up the simula-
tion and achieve interactive frame rates.

The Finite Element Methods (FEM) is one of the most widely used techniques in com-
putations sciences for the simulation of solid objects. The method reduces general partial
differential equations to systems of algebraic equations. In general, these equations are

8

CHAPTER 2. INTRODUCTION TO SOLIDS 9

non-linear. Solvers for systems of non-linear equations are typically too slow for real-time
performance. In certain scenarios, it is feasible to work with linear approximations, mainly
when the deformations are small such as in the analysis of buildings. However, in the case
of freely moving highly deformable objects, the artifacts are significant. One way to make
FEM-based simulations fast enough for real-time applications is to decompose deforma-
tions into linear and rotational parts [MG04] as detailed in Chapter 4.

In real-time applications, solid objects are often represented by mass spring networks
rather then FEM meshes. Mass spring systems will be discussed in Chapter 3. They are
easier to program than FEM and faster in general with disadvantage that they are harder to
tune and do not converge to the true solution as the mesh spacing goes to zero. Most of the
time, this is not a significant problem in real-time scenarios. Cloth is almost always repre-
sented by mass-spring networks because these meshes can easily handle the 2-dimensional
structure of cloth. In the FEM framework, special complex elements which can represent
bending would have to be used for cloth, a solution that is unnecessarily complex and too
slow in general. As mentioned in the introduction, it is essential that simulations are un-
conditionally stable. Simple explicit integration schemes have no such guarantee. Implicit
integration, on the other hand, are more complex to code, slower and introduce damping.
Chapter 5 introduces the concept of position based integration which allows to directly con-
trol the behavior of the simulation [Jak01, MHR06].

With the assumption of a body to be rigid, its state can be described by a single position,
orientation and a linear and angular velocity. This observation allows the simulation of a
large number of rigid bodies in real time as described in Chapter 6. Rigid body simulators
are the essential part of every physics engine in games because most of the objects present
in a level can be considered to be rigid.

Chapter 3

Mass Spring Systems
Matthias Müller

One of the simplest approaches to simulate solid deformable objects is to represent and
simulate them as a mass spring system. Since this approach is so simple, it is an ideal
framework to study various techniques for simulation and time integration. A mass spring
system consists of a set of point masses that are connected by springs. The physics of such
a system is straight forward and a simulator can be programmed on just a few pages. This
simplicity comes at the price of a few drawbacks you have to be aware of:

• The behavior of the object depends on the way the spring network is set up

• It can be difficult to tune the spring constants to get the desired behavior.

• Mass spring networks cannot capture volumetric effects directly such as volume con-
servation or prevention of volume inversions.

For various applications these drawbacks are not essential. In those cases, mass spring
systems are the best choice because they are easy to implement and fast. If more accurate
physics is needed, other approaches like the Finite Element Methods detailed in Chapter 4
should be considered.

10

CHAPTER 3. MASS SPRING SYSTEMS 11

3.1 Physical Formulation

A mass spring system is composed of a set of N particles with masses mi, positions xi

and velocities vi, with i ∈ 1 . . .N. These particles are connected by a set S of springs
(i, j, l0,ks,kd), where i and j are the indices of the adjacent particles, l0 the rest length, ks

the spring stiffness and kd the damping coefficient. The spring forces acting on the adjacent
particles of a spring are

fi = fs(xi,x j) = ks
x j−xi

|x j−xi|
(|x j−xi|− l0) (3.1)

f j = fs(x j,xi) =−fs(xi,x j) =−fi (3.2)

These forces conserve momentum (fi + f j = 0) and are proportional to the elongation of
the spring (|x j − xi| − l0). Alternatively, one can make them proportional to the relative
elongation by replacing the constant ks with the constant ks/l0. The damping forces

fi = fd(xi,vi, x j,v j) = kd(v j−vi) ·
x j−xi

|x j−xi|
(3.3)

f j = fd(x j,v j, xi,vi) =−fi (3.4)

are proportional to the velocity difference projected onto the spring and are momentum
conserving as well. Let us combine the two forces into one unified spring force as

f(xi,vi, x j,v j) = fs(xi,x j)+ fd(xi,vi, x j,v j) (3.5)

3.2 Simulation

Newton’s second law of motion f = mẍ is the key to get from the definition of forces to a
simulation algorithm. Solving for the acceleration yields ẍ = f/m, where ẍ is the second
derivative of the position with respect to time. This formula can be used to compute the
accelerations of the particles based on the forces acting on them. As a first step towards
simulation, we separate this second order ordinary differential equation into two coupled
first order equations as

v̇ = f(x,v)/m (3.6)

ẋ = v (3.7)

The analytical solutions of these equations are

v(t) = v0 +
∫ t

t0
f(t)/m dt and (3.8)

x(t) = x0 +
∫ t

t0
v(t)dt. (3.9)

Starting from the initial conditions v(t0) = v0 and x(t0) = x0, the integrals sum the infinites-
imal changes up to time t. Simulation is the same as computing x(t) and v(t) from time t0

12
Real Time Physics

Class Notes

on. Thus, the words simulation and time integration are often used interchangeably. The
simplest way to solve the equations numerically is to approximate the derivatives with finite
differences

v̇ =
vt+1−vt

∆t
+O(∆t2) and (3.10)

ẋ =
xt+1−xt

∆t
+O(∆t2), (3.11)

where ∆t is a discrete time step and t the frame number. Substituting these approximations
into Eq. (3.6) and Eq. (3.7) yields two simple update rules

vt+1 = vt +∆t f(xt ,vt)/m (3.12)

xt+1 = xt +∆t vt . (3.13)

This is the explicit Euler integration scheme. It is an explicit scheme because the quan-
tities of the next time step can directly be computed from the quantities at the current time
step using explicit formulas. A small trick which makes the scheme more stable is to use
vt+1 in stead of vt on the right hand side of Eq. (3.13) because the new velocity is already
available at that point in time. We are now ready to write down an algorithm for the simu-
lation of a mass spring system:

// initialization
(1) forall particles i
(2) initialize xi,vi and mi

(3) endfor
// simulation loop
(4) loop
(5) forall particles i
(6) fi← fg + fcoll

i + ∑
j,(i, j)∈S

f(xi,vi, x j,v j)

(7) endfor
(8) forall particles i
(9) vi← vi +∆t fi/mi

(10) xi← xi +∆t vi

(11) endfor
(12) display the system every nth time
(13) endloop

Here, fg is the gravity force and fcoll forces due to collisions. Explicit Euler integration is
one of the simplest integration methods but it has an essential drawback. It is only stable for
relatively small steps. We will not go into the details of stability analysis. Just to give you
an idea, the time step in a typical real-time scenario has to be of the order of 10−4 . . .10−3

seconds meaning that several simulation steps are necessary between two visualized frames.

CHAPTER 3. MASS SPRING SYSTEMS 13

This is why in the above algorithm step (12) is executed only every nth time. The main
reason for the instability is that the Euler scheme steps blindly into the future. It assumes
that the force is constant throughout an entire step. Consider the situation when a spring
is slightly stretched and the adjacent particles move towards each other. With a large time
step, the particles pass the equilibrium configuration so the spring force changes sign during
the time step. This is not accounted for if the force at the beginning is used throughout the
entire time step. In this particular situation, the particles overshoot and gain energy which
can result in an explosion eventually.

One way to improve the situation is to use more accurate integration schemes. Popular
choices are second and fourth order Runge-Kutta integrators. These schemes sample the
forces multiple times within the time step to reduce the problem mentioned.

3.3 Runge-Kutta Integration

The second order Runge-Kutta integrator replaces Eq. (3.12) and Eq. (3.13) with

a1 = vt a2 = f(xt ,vt)/m

b1 = vt +
∆t
2

a2 b2 = f(xt +
∆t
2

a1,vt +
∆t
2

a2)/m

xt+1 = xt +∆tb1 vt+1 = vt +∆tb2

to get from the position xt and velocity vt at the current time step to the position and velocity
xt+1 and vt+1 at the next time step. Here is the modified algorithm which uses a second order
Runge Kutta integrator:

// initialization
(1) forall particles i
(2) initialize xi,vi and mi

(3) endfor
// simulation loop
(4) loop
(5) forall particles i
(6) a1,i← vi

(7) a2,i←

[
fg + fcoll

i + ∑
j,(i, j)∈S

f(xi,vi,x j,v j)

]
/mi

(8) endfor
(9) forall particles i
(10) b1,i← vi + ∆t

2 a2,i

(11) b2,i←

[
fg + fcoll

i + ∑
j,(i, j)∈S

f(xi +
∆t
2

a1,i,vi +
∆t
2

a2,i,x j +
∆t
2

a1, j,v j +
∆t
2

a2, j)

]
/mi

(12) xi← xi +∆tb1,i

(13) vi← vi +∆tb2,i

(14) endfor
(15) display the system every nth time

14
Real Time Physics

Class Notes

(16) endloop

As you can see, the forces have to be evaluated twice at each time step. So one second order
Runge-Kutta step takes as much time as two Euler steps. However, Runge-Kutta is second
order accurate in contrast to the first order accurate Euler scheme. This means that when
you half the time step using Euler, you end up with half the error in contrast to one fourth of
the error in the Runge-Kutta case. There is a fourth order Runge Kutta integration scheme
which looks like this:

a1 = vt a2 = f(xt ,vt)/m

b1 = vt +
∆t
2

a2 b2 = f(xt +
∆t
2

a1,vt +
∆t
2

a2)/m

c1 = vt +
∆t
2

b2 c2 = f(xt +
∆t
2

b1,vt +
∆t
2

b2)/m

d1 = vt +∆tc2 d2 = f(xt +∆tc1,vt +∆tc2)/m

xt+1 = xt +
∆t
6

(a1 +2b1 +2c1 +d1) vt+1 = vt +
∆t
6

(a2 +2b2 +2c2 +d2)

This scheme is among the most popular integration techniques in computational sciences.
The forces have to be evaluation four times which is rewarded by fourth order accuracy.
Halving the time step results in one sixteenth of the error.

3.4 Verlet Integration

The way used in the Runge-Kutta scheme to improve stability and accuracy was to sample
the forces multiple times during one time step. Another idea is to use quantities evalu-
ated in the past to increase the degree of the approximation of the derivatives in Eq. (3.10)
Eq. (3.11). A variety of schemes are based on this idea. In this class, Verlet integration is
among the simplest and most popular in real-time applications. The basic idea is to keep the
positions of time t−∆t in an additional state variable and use this information for a more
accurate prediction. Taylor expansion of the positions in the two time directions yields

x(t +∆t) = x(t)+ ẋ(t)∆t +
1
2

ẍ(t)∆t2 +
1
6

...x (t)∆t3 +O(∆t4) (3.14)

x(t−∆t) = x(t)− ẋ(t)∆t +
1
2

ẍ(t)∆t2− 1
6

...x (t)∆t3 +O(∆t4) (3.15)

Adding these two equations and rearranging terms gives

x(t +∆t) = 2x(t)−x(t−∆t)+ ẍ(t)∆t2 +O(∆t4) (3.16)

= x(t)+ [x(t)−x(t−∆t)]+ f(t)∆t2/m+O(∆t4). (3.17)

(3.18)

As you can see, the linear and cubic terms cancel out which makes this a fourth order
integration scheme. The velocity does not show up explicitly. Instead, the position at the

CHAPTER 3. MASS SPRING SYSTEMS 15

previous time step has to be stored. We can bring the velocity back in by defining v(t) =
[x(t)− x(t −∆t)]/∆t. Incorporating this idea and going back to the frame time notation
yields

xt+1 = xt +vt
∆t + f(xt)∆t2/m (3.19)

vt+1 = (xt+1−xt)/∆t. (3.20)

Unlike in the related Velocity Verlet scheme, the velocity here is only first order accurate
and not really ”used”. It is just a different way of representing the position at the last time
step. The interesting fact that this scheme operates on positions only is leveraged in the
Position Based Dynamics approach introduced in Chapter 5.

3.5 Implicit Integration

The integration schemes discussed so far are only conditionally stable meaning that there
is a certain range for the time step ∆t size for which the simulation is stable. This range
depends mainly on the stiffness of the springs. The stiffer the springs, the smaller the time
step required to keep the simulation stable. In real-time situation, e.g. in a computer game, it
is essential that an integration is unconditionally stable meaning stable in all circumstances
and for the time step size given by the required frame rate. One way to achieve this is to use
an implicit integration scheme. Another possibility will be discussed in Chapter 5.

The most popular implicit integration scheme used in computer graphics is implicit
Euler. The explicit Euler scheme described in Eq. (3.12) and Eq. (3.13) has to be modified
only slightly to make it implicit:

vt+1 = vt +∆t f(xt+1)/m (3.21)

xt+1 = xt +∆t vt+1. (3.22)

We removed the friction force so the sum of all forces only depends on the positions, not the
velocities. Friction forces stabilize the system so they can be added in an explicit step after
the implicit solve. Second, implicit integration introduces quite a lot of numerical damping
so in typical situations there is no need to add physical damping as well.

The core change, however, is to use the positions and velocities of the new time step on
the right hand side as well. It is not possible any more to directly and explicitly evaluate
these two equations. Instead, we have two implicit equations that form a non-linear alge-
braic system with the positions and velocities of the next time step as the unknowns. Non
formally one could say that in contrast to explicit schemes, we don’t move blindly into the
future but make sure that the quantities we arrive at are in accordance with physical laws.

As a first step towards solving these equations for the entire mass spring network we
combine the positions, velocities and forces of all particles into two single vectors and a
multidimensional force

x = [xT
1 , . . . ,xT

n]T

v = [vT
1 , . . . ,vT

n]T

f(x) = [f1(x1, . . . ,xn)T , . . . fn(x1, . . .xn)T]T

16
Real Time Physics

Class Notes

We also construct a mass matrix M ∈ R3n×3n which is diagonal with the values m1,m1,m1,
m2,m2,m2, . . . ,mn,mn,mn along the diagonal. These definitions lead to the following sys-
tem of equations

Mvt+1 = Mvt +∆tf(xt+1) (3.23)

xt+1 = xt +∆vt+1 (3.24)

Substituting Eq. (3.24) into Eq. (3.23) results in a single system for the unknown velocities
vt+1 at the next time step

Mvt+1 = Mvt +∆tf(xt +∆tvt+1). (3.25)

This system is non-linear because the forces are non-linear in the positions.

3.5.1 Newton-Raphson Solver

The general way to solve such a system is to use the Newton-Raphson method. This method
starts at a guess for the unknown vt+1 and iteratively improves this guess. To this end, the
equations are linearized at the current state and the resulting linear system is solved to find a
better approximation. This process is repeated until the error falls below a certain threshold.

For real-time applications, linearizing multiple times per time step is too expensive. It
is custom, therefore, to linearize once and use the current velocities vt as a guess for vt+1.
Newton’s first law says that without forces, velocities do not change which makes this guess
a good one. Linearizing the forces at xt yields

Mvt+1 = Mvt +∆t
[

f(xt)+
∂

∂x
f(xt) · (∆t vt+1)

]
(3.26)

= Mvt +∆tf(xt)+∆t2Kvt+1, (3.27)

where K∈R3n×3n is the Jacobian of f. It contains the derivatives of all 3n force components
w.r.t. all 3n position components of the particles. This matrix is also called the tangent
stiffness matrix in this context. While a standard stiffness matrix of an elastic element is
evaluated at the equilibrium, K is evaluated at the current positions of the particles. We
rearrange the terms to get a standard linear system for the unknown velocities[

M−∆t2K
]

vt+1 = Mvt +∆tf(xt) (3.28)

Avt+1 = b, (3.29)

where A is a 3n× 3n dimensional matrix and b a 3n dimensional vector. In real-time ap-
plications, this system is typically solved using iterative methods like Conjugate Gradients
(CG). Direct methods are not practical because K changes at each time step. The right hand
side vector b can directly be evaluated using known quantities only.

Now let us have a look at K. A spring force between particles i and j adds the four 3×3
sub-matrices Ki,i, Ki, j, K j,i and K j, j to the global matrix K at positions (3i,3i), (3i,3 j),
(3 j,3i) and (3 j,3 j) respectively. In order to evaluate these sub-matrices, we need to deduce

CHAPTER 3. MASS SPRING SYSTEMS 17

the derivatives of the spring force defined in Eq. (3.1) w.r.t. the positions xi and x j:

Ki,i =
∂

∂xi
fs(xi,x j) (3.30)

= ks
∂

∂xi

(
(x j−xi)− l0

x j−xi

|x j−xi|

)
(3.31)

= ks

(
−I+

l0
l

[
I−

(x j−xi)(x j−xi)T

l2

])
(3.32)

=−Ki, j = K j, j =−K j,i (3.33)

where I is the 3× 3 identity matrix and l = |x j− xi| the actual length of the spring. The
tangent stiffness matrix is not constant throughout the simulation because it depends on the
current positions x1 . . .xn of the particles. So at each time step K is set to zero. Then, for
each spring the four sub-matrices Ki,i, Ki, j, K j,i and K j, j are added at the right positions
in K. Next, the right hand side b of Eq. (3.29) is evaluated and the resulting linear system
solved for vt+1. Finally the velocities can be updated using Eq. (3.24).

The tangent stiffness matrix is sparse in the general case. It would only be fully occupied
if each particle was connected to all other particles which is typically not the case. Because
all sub-matrices associated with a spring are equal up to their sign, only one 3× 3 matrix
has to be stored per spring.

As we saw in this chapter, there is a wide spectrum of integration methods ranging from
very simple but unstable methods to quite complex unconditionally stable schemes. Which
choice is optimal depends on the application. Implicit integration has two main advantages,
its stability and the possibility of using a global solver such as Conjugate Gradients. Think
of a long thin triangle mesh. If you pull on one side, the explicit Euler scheme can only
propagate forces one triangle per integration step. A global solver propagates errors much
faster across the unknowns in the system. This way, deformable objects can be made stiff.
This is important in connection with cloth simulation for instance. Cloth has low bending
resistance but is quite stiff w.r.t. stretching. On the other hand, in order to achieve real-time
performance, the time step for an implicit integrator has to be chosen quite large because one
integration step is so expensive. Also, implicit integration introduces substantial numerical
damping. Both effects let interesting spatial and temporal detail disappear.

3.6 Mesh Creation

In computer games, artists model 3d objects as graphical meshes that represent their surface.
These meshes are often not well suited to be used for simulation directly for several reasons.
First, they do not represent the interior of the object and second, they contain badly shaped
triangles, duplicated vertices, intersecting triangles or are just triangle soups in the extreme
case. In general, it is better to use two representations of the object, one for visualization
and one for simulation. Sometimes a third representation for collision detection is needed
as well. If the simulation and visual representations are not the same, a mechanism to move
the visual mesh along with the physical mesh is needed. If the connectivity is based on a
tetrahedral mesh, one can simply use the barycentric coordinates of each visual vertex w.r.t.
its surrounding tetrahedron to move the vertex via skinning.

18
Real Time Physics

Class Notes

There are many ways to create a simulation mesh from a graphical mesh. Let us have
a look at a procedure that is quite simple. We create the mass spring system from a tetra-
hedral mesh by turning each vertex into a particle and each tetrahedral edge into a spring.
What is missing are the masses of the particles and the stiffness and damping coefficients of
the springs. Given a user specified density ρ , the mass of each tetrahedron can be computed
as its volume multiplied by the density. Then, each tetrahedron distributes its mass evenly
among its four adjacent vertices. This is a straight forward procedure. Finding reasonable
spring coefficients is not. No matter how you do it, the behavior of the mass spring sys-
tem will always depend on the structure of the mesh. This problem can only be solved by
considering volumetric tetrahedra for simulation (see Chapter 4), not just their one dimen-
sional edges. Since there is no correct way, we might as well assign a common stiffness
and damping coefficient to all springs. If the lengths of the springs do not vary too much,
this approach works quite well. Otherwise you might want to come up with some magic to
compute the coefficients from the edge lengths.

The remaining question is how to go from a triangular surface mesh to a volumetric
tetrahedral mesh. To this end, we distribute a certain number of particles pi evenly inside
the volume defined by the surface mesh and on the surface mesh itself. To do this, we need
an inside-outside test. The traditional way is to create a ray originating from the particle and
count the number of surface triangle intersections. If the number is odd, the particle is inside
the surface. This procedure requires the surface to be watertight. Then we run Delaunay
tetrahedralization on these points and only keep tetrahedra with centers inside the surface.
A nice feature of this approach is that the resulting tetrahedralization is independent of the
triangulation of the surface. There is a pretty simple formulation of the Delaunay algorithm
which constructs a tetrahedral mesh from a set of points:

(1) create large tetrahedron that contains all points p1, . . . , pn

using four new far points q0, . . . , q3.
(2) forall points pi

(3) clear face list l
(4) forall tetrahedra t j the circumsphere of which contains pi

(5) forall faces fk of t j

(6) if l contains fk remove fk from l
(7) else add fk to l
(8) endfor
(9) delete t j

(10) endfor
(11) forall faces fk in l
(12) create a tetrahedron from fk to pi

(13) endfor
(14) endfor
(15) remove all tetrahedra that contain any of the points q0, . . . , q3

CHAPTER 3. MASS SPRING SYSTEMS 19

3.7 Collision Detection

There is a large body of work on collision detection for deformable objects [TKZ+04].
In this section we will look at spatial hashing only [THM+03]. This method works well
when all primitives in a scene have about the same size. An advantage of using a separate
representation of the object for physics is, that this representation can be optimized for a
specific simulation algorithm. In this case, we make sure that there is not much variation in
the sizes of the tetrahedra.

Spatial hashing works as follows: First, a grid spacing h is chosen. The spacing should
match the average size of the primitives. It defines a regular grid in space. Then, each
tetrahedron is inserted into all grid cells it intersects. With this data structure in place,
the collision detection algorithm can retrieve all objects in the neighborhood of a point in
constant time. The integer coordinates of the grid cell a point p lies in are

(ix, iy, iz) = (bpx

h
c,b

py

h
c,bpz

h
c). (3.34)

Obviously the number of grid cells defined this way is not bounded. In order to store the
grid, one could restrict the objects to remain in a finite rectangular volume and then only
work with the cells in this volume. A more flexible variant is to allocate a fixed number
N of buckets and then map the cell coordinates to a bucket number using a hash function.
Since there are way more real cells then buckets, multiple cells will be mapped to the same
bucket. This is not a problem though because even though a spatial query might return
tetrahedra from other parts of the world, it will always return all true candidates as well.
Thus, hash collisions slow down collision detection but do not make it less accurate. Here
is an example of a hash function

i = [(ix ·92837111) xor (ix ·689287499) xor (ix ·283923481)] mod N, (3.35)

where i is the bucket number cell (ix, iy, iz) is mapped to. At each time step, the grid is
recreated from scratch. If N is substantially larger than the number of tetrahedra, clearing all
the buckets at each time step is too expensive. Instead, each bucket contains a frame counter.
If this counter is smaller than the global frame counter, the bucket is defined to be empty
and whenever an object is inserted, the counter of the bucket is set to the global counter. At
the beginning of collision detection, the global frame counter is increased which makes all
buckets empty at once. Then, each tetrahedron is added to the buckets corresponding to the
cells it overlaps. Finally, the algorithm iterates through all the particles on the surface of
the mesh and retrieves all the tetrahedra in the neighborhood of that particle. If the surface
particle is inside a tetrahedron, a collision is reported. This method works for both, inter
and intra object collision. It does not handle edge-edge collisions though.

3.8 Collision Response

The basic event reported from collision detection is that a surface particle q of an object
A is inside a tetrahedron t of an object B. In the case of a self collision, the two objects
are identical. It is far from trivial to find a stable way of resolving such a collision. The
first problem is to decide where the penetrated vertex should go. One possibility is to move

20
Real Time Physics

Class Notes

it to the closest surface point of object B. In general, this is not a very good choice. It is
more natural and more stable to move q back to where it penetrated object B. A way to
achieve this is to construct a ray from q in the opposite direction of the surface normal at q.
Let us call the intersection of the ray with B’s surface q′. This point lies inside a face of a
tetrahedron of B with adjacent vertices p1, p2 and p3. Let β1, β2 and β3 be the barycentric
coordinates of q′ such that

q′ = β1 p1 +β2 p2 +β3 p3. (3.36)

We can now define the collision response force

fcoll = k(q′−q) (3.37)

which is proportional to the penetration depth and a user specified stiffness coefficient. This
force is applied to vertex q. To make sure the momenta are conserved forces −β1 fcoll,
−β2 fcoll and −β2 fcoll are applied to vertices p1, p2 and p3 respectively. The method de-
scribed is quite simplistic. A more sophisticated and more robust technique is described in
[HTK+04].

Chapter 4

The Finite Element Method
Matthias Müller

Mass spring system cannot capture volumetric effects, as mentioned in the previous
chapter. Also, their behavior depends on the structure of the mesh. To fix these problems, we
will now treat the deformable body as a continuous volume. To this end, we will look into
the world of continuum mechanics. Of course, summarizing such a complex mathematical
framework in its generality on just a few pages is not possible. Therefore, we will focus on
the most important concepts needed for the simulation of deformable objects in computer
graphics. Do not worry if you don’t grasp all the details of this section the first time.

In Section 4.2 we will turn the resulting partial differential equations into a relatively
simple formula for computing the forces that act on a tetrahedron based on the positions of
its vertices. Given this formula, one can think of the tetrahedron as a generalized four-way
spring and build larger structures from it like in mass-spring systems.

In the last section we will look at ways to evaluate the forces efficiently in order to
enable simulation of large tetrahedral meshes in real time.

21

22
Real Time Physics

Class Notes

l l∆

A
fn

x

u(x)
l∆

f /A=E∆l/ln

Figure 4.1: Hooke’s law says that the force per area applied to a beam is proportional to its
relative elongation.

4.1 Continuum Mechanics

In computational sciences, deformable objects are often modeled as continuous (three di-
mensional) objects. For the description of their behavior, the three quantities displacement,
strain and stress play a major role. In one dimensional problems, these quantities are all one
dimensional and have intuitive interpretations. Let us consider a beam with cross sectional
area A as shown in Fig. 4.1. When a force fn is applied in the direction of the beam perpen-
dicular to the cross section, the beam with original length l expands by ∆l. These quantities
are related via Hooke’s law as

fn

A
= E

∆l
l

. (4.1)

The constant of proportionality E is Young’s modulus. For steel E is in the order of
1011N/m2 while for rubber it lies between 107 and 108N/m2. The equation states that the
stronger the force per area, the larger the relative elongation ∆l/l as expected. Also, the
magnitude of the force per area needed to get a certain relative elongation increases with
increasing E so Young’s modulus describes the beam’s stiffness. Hooke’s law can be written
in a more compact form as

σ = Eε, (4.2)

where σ = fn/A is the applied stress and ε = ∆l/l the resulting strain or the other way
around, σ the resulting internal stress due to applied strain ε . It follows that the unit of
stress is force per area and that strain has no unit. This is true in three dimensions as well.

A three dimensional deformable object is typically defined by its undeformed shape
(also called equilibrium configuration, original, rest or initial shape) and by a set of material
parameters that define how it deforms under applied forces. If we think of the rest shape as
a continuous connected subset Ω of R3, then the coordinates x ∈ Ω of a point in the object
are called material coordinates of that point.

When forces are applied, the object deforms and a point originally at location x (i.e.
with material coordinates x) moves to a new location p(x), the spatial or world coordinates
of that point. Since new locations are defined for all material coordinates x, p(x) is a vector

CHAPTER 4. THE FINITE ELEMENT METHOD 23

field defined on Ω. Alternatively, the deformation can also be specified by the displacement
field, which, in three dimensions, is a vector field u(x) = p(x)−x defined on Ω.

4.1.1 Strain

In order to formulate Hooke’s law in three dimensions, we have to find a way to measure
strain, i.e. the relative elongation (or compression) of the material. In the general case, the
strain is not constant inside a deformable body. In a bent beam, the material on the convex
side is stretched while the one on the concave side is compressed. Therefore, strain is a
function of the material coordinate ε = ε(x). If the body is not deformed, the strain is zero
so strain must depend on the displacement field u(x). A spatially constant displacement
field describes a pure translation of the object. In this situation, the strain should be zero
as well. Thus, strain is derived from the spatial variation or spatial derivatives of the
displacement field. In three dimensions the displacement field has three components u =
u(x) = [u(x,y,z),v(x,y,z),w(x,y,z)]T and each component can be derived with respect to
one of the three spatial variables x,y and z. Therefore, strain cannot be expressed by a
single scalar anymore. This makes sense because at a single point inside a three dimensional
object, the material can be stretched in one direction and compressed in another at the same
time. Thus, strain is represented in three dimensions by a symmetric 3 by 3 matrix or tensor

ε =

 εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 (4.3)

We consider two ways to compute the components of the strain tensor from the spatial
derivatives of the displacement field

εG =
1
2
(∇u+[∇u]T +[∇u]T ∇u) and (4.4)

εC =
1
2
(∇u+[∇u]T), (4.5)

where the symmetric tensor εG ∈ R3x3 is Green’s nonlinear strain tensor (non-linear in the
displacements) and εC ∈ R3x3 its linearization, Cauchy’s linear strain tensor. The gradient
of the displacement field is a 3 by 3 matrix

∇u =

 u,x u,y u,z

v,x v,y v,z

w,x w,y w,z

 , (4.6)

where the index after the comma represents a spatial derivative.
It is natural to derive strain from the spatial derivatives of the displacement field, but

the specific definitions of εG and εC look quite arbitrary. There is a relatively easy way to
motivate their definition though. Let us have a look at the the transformation p(x) in the
neighborhood of a material point. Without loss of generality we can choose the material

24
Real Time Physics

Class Notes

point 0. Close to that point, p(x) can be approximated with a linear mapping as

p(x) = p(0)+∇p ·x+O(|x|2) (4.7)

= p(0)+
[

∂p
∂x

,
∂p
∂y

,
∂p
∂ z

]
·

 x
y
z

+O(|x|2) (4.8)

or

p(x,y,z)≈ p(0)+
∂p
∂x
· x+

∂p
∂y
· y+

∂p
∂ z
· z (4.9)

= p(0)+p,x · x+p,y · y+p,z · z. (4.10)

This shows that the local neighborhood of material point 0 is moved into a new frame with
origin p(0) and axes p,x,p,y and p,z. The neighborhood does not get distorted by the trans-
lation along p(0). For the neighborhood not to get distorted by the entire transformation,
the new axes must satisfy two conditions. All of them must have unit length, otherwise the
neighborhood gets stretched or compressed along the axes. In addition, the axes must be
perpendicular to each other, otherwise the neighborhood is sheared. These constraints can
elegantly be expressed by requiring that [∇p]T ∇p = I. Expanding this expression yields

[∇p]T ∇p =

 pT
,x

pT
,y

pT
,z

 [p,xp,yp,z] =

 |p,x|2 p,x ·p,y p,x ·p,z

p,y ·p,x |p,y|2 p,y ·p,z

p,z ·p,x p,z ·p,y |p,z|2

 . (4.11)

For this to be equal to the identity matrix, all diagonal entries must be 1 saying that all axes
must have unit length. The off-diagonal entries are 0 if all the dot products between pairs
of axes are zero. This is the case when they are perpendicular to each other. In other words,
[∇p]T ∇p = I means no strain. From this observation it makes sense to define strain as the
deviation of [∇p]T ∇p from I, so

ε = [∇p]T ∇p− I. (4.12)

With this definition, the diagonal entries of ε are greater than zero if the material gets
stretched and smaller if the material gets compressed. The off-diagonal entries indicate the
amount of shearing. Now from u(x) = p(x)−x follows that ∇u = ∇p− I. Substituting into
(4.12) yields

ε = (∇u+ I)T (∇u+ I)− I (4.13)

= ∇u+[∇u]T +[∇u]T ∇u (4.14)

which is Green’s strain tensor up to a factor of 1
2 . Cauchy’s strain is simply the linearization

of Green’s strain omitting the quadratic term [∇u]T ∇u.

4.1.2 Strain Examples

It is now time to look at two specific examples. Consider the displacement function u(x,y,z)=
[x,y,z]T . It stretches material radially away from the origin. In this case ∇u = I with I the

CHAPTER 4. THE FINITE ELEMENT METHOD 25

identity matrix. The two strain measures are εG = 3
2 I and εC = I. Even though the displace-

ments get larger and larger for points further and further away from the origin, the strain is
constant everywhere. The two measures differ but only by a constant scalar factor.

In the second example we consider a rotation of 90 degrees about the z-axis. As a rigid-
body mode, such a displacement field should not generate any strain. We have p(x,y,z) =
[−y,x,z]T and u = [−y− x,x− y,z− z]T . This yields

∇u =

 −1 −1 0
1 −1 0
0 0 0

 , εC =

 −1 0 0
0 −1 0
0 0 0

 , εG = 0. (4.15)

In this case, only Green’s non linear tensor yields the correct result, its linearization cannot
capture the rotation correctly. This is an important observation we will discuss in Sec-
tion 4.3.

4.1.3 Stress

Now let us turn to the measurement of stress, the force per unit area. As strain, stress is
represented in three dimensions by a symmetric 3 by 3 matrix or tensor

σ =

 σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (4.16)

with the following interpretation: As we saw before, at a single material point the strain
depends on the direction of measurement. The same is true for the stress. Let n be the
normal vector in the direction of measurement. Then,

df
dA

= σ ·n. (4.17)

In other words, to get the force per area f/A with respect to a certain plane with normal
n, the stress tensor is multiplied by n.

4.1.4 Constitutive Laws

A constitutive law relates strain to stress. Hooke’s law is a special case. It states that stress
and strain are linearly related. This holds for so called Hookean materials under small
deformations. In three dimensions, Hooke’s law reads

σ = Eε. (4.18)

Both stress and strain are symmetric tensors so they have only 6 independent coeffi-
cients. The quantity E relating the two can, thus, be expressed by a 6 by 6 dimensional
matrix. For isotropic materials (with equal behavior in all directions), Hooke’s law has the
form

26
Real Time Physics

Class Notes

dx
dy

dz
σxx
σxy
σxz

dyd
σxx
σxy
σxz

dydz

x,y,zd+xx,y,z

-

Figure 4.2: An infinitesimal volumetric element of a deformable body. The blue arrows
show the stress based force acting on the faces perpendicular to the x-axis.



σxx

σyy

σzz

σxy

σyz

σzx

=
E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν





εxx

εyy

εzz

εxy

εyz

εzx

 ,

(4.19)
where the scalar E is Young’s modulus describing the elastic stiffness and the scalar

ν ∈ [0 . . . 1
2) Poisson’s ratio, a material parameter that describes to which amount volume is

conserved within the material.

4.1.5 Equation of Motion

The concepts we saw so far can be used to simulate a dynamic elastic object. First, we
apply Newton’s second law of motion f = mp̈ to the infinitesimal volumetric element dV
at location x of the object (see Fig. 4.2). Since the mass of an infinitesimal element is not
defined, both sides of the equation of motion are divided by the volume dx · dy · dz of the
element. This turns mass [kg] into density [kg/m3] and forces [N] into body forces [N/m3].
We get

ρp̈ = f(x), (4.20)

where ρ is the density and f(x) the body force acting on the element at location x. This
force is the sum of external forces (e.g. gravity or collision forces) and internal forces (due
to deformation). The next step is to compute the internal elastic force at the center of the
element due to the stress. To get this force, we are going to sum up the forces that act on
each of the six faces of the infinitesimal element. Let us first look at the faces perpendicular
to the x-axis. The center of the face with normal [−1,0,0]T is located at [x,y,z]T and the
one with face normal [1,0,0]T at position [x+dx,y,z]T . According to Eqn. (4.17) the forces
per unit area acting on these faces are

−

 σxx

σxy

σxz


x,y,z

and

 σxx

σxy

σxz


x+dx,y,z

(4.21)

CHAPTER 4. THE FINITE ELEMENT METHOD 27

To get forces, we have to multiply by the face area dy ·dz. Finally, the body forces are
the forces divided by dV = dx ·dy ·dz. This yields a total force for the two faces of

f =


 σxx

σxy

σxz


x+dx,y,z

−

 σxx

σxy

σxz


x,y,z

/dx =

 σxx,x

σxy,x

σxz,x

 , (4.22)

where the comma denotes spatial derivatives. If we take the forces acting on the other
faces into account as well, we arrive at the final expression for the body forces acting on an
infinitesimal element due to internal stresses

fstress = ∇ ·σ =

 σxx,x +σxy,y +σxz,z

σyx,x +σyy,y +σyz,z

σzx,x +σzy,y +σzz,z

 , (4.23)

where, again, the comma represents a spatial derivative. We are now ready to write
down the entire partial differential equation (PDE) governing dynamic elastic materials:

ρp̈ = ∇ ·σ + fext , (4.24)

where fext are externally applied body forces such as gravity or collision forces. This hyper-
bolic PDE can be used to compute the world coordinates p of all material points inside the
elastic body at all times which is the same as simulating the deformable object. How would
one do this?

The density ρ and the external forces fext are known quantities. The process starts by
defining the material coordinates x and the world coordinates p of all points in the body (the
initial condition). Then, at each time, the displacement field is u = p− x from which the
strain field ε can be computed. The stress field σ is derived from the strains via Hooke’s
law. Finally, σ is used to compute the acceleration of the world positions of the body p̈
using Newton’s law and these accelerations define how the positions evolve.

A linear dependency of the stresses on the strains such as in a Hookean material is
called material linearity. A linear measure of strain such as Cauchy’s linear strain tensor
defined in Eqn. (4.5) is called geometric linearity. Only with both assumptions, material
and geometric linearity, Eqn. (4.24) becomes a linear PDE. Linear PDE’s are easier to solve
because discretizing them via Finite Differences of Finite Elements yields linear algebraic
systems. However, for large deformations or rotations, the simplification of geometric lin-
earity causes significant visual artifacts as we saw in one of the examples above.

4.2 Finite Element Discretization

The unknown in Eq. (4.24) is p which is a continuous vector field. This rises the question
of how one would write down the solution. A general continuous vector field cannot be
described in compact form because it contains an uncountable set of vectors. A special
class of vector fields can be specified by compact analytical formulas though. An example
is the rotation field p(x,y,z) = [y,−x,z] we discussed earlier. To end up with a description in
the form of a formula, one would have to solve Eq. (4.24) analytically. This is only possible
for toy problems with simple domains and boundary conditions.

28
Real Time Physics

Class Notes

Fortunately there is another way to arrive at solutions that can be written down explicitly.
Just restrict the possible solutions to a certain class of continuous vector fields that can be
described by a finite number of values. From such a restriction it follows that in the general
case, a solution computed in this way will only be an approximation of the true solution.
Ideally the restricted solution is the one within the restricted class of vector fields that is
closest to the true solution.

This is the core idea of the Finite Element Method (FEM). First, the domain is di-
vided into a finite set of (polygonal) elements of finite size which cover the entire domain
without overlaps. Within each element, the vector field is described by an analytical for-
mula that depends on the positions of the vertices belonging to the element. More general
parametrizations are possible but we will work with vertex positions only.

4.2.1 Constant Strain Tetrahedral Meshes

To keep things simple, we use tetrahedra as finite elements and represent the domain, i.e.
the volume of the deformable body by a tetrahedral mesh. Within each tetrahedron, we
use the simplest possible deformation field, a linear mapping. A constant deformation field
within the element would be even simpler but a constant mapping would yield zero strain,
and would therefore not be practical to simulate deformable bodies.

Let x0,x1,x2,x3 be the the corners of the tetrahedron in the undeformed rest state and
p0,p1,p2,p3 the same corners in the deformed state. We now have to find a linear vector
field p(x) that maps points within the tetrahedron in the rest state to the points within the de-
formed tetrahedron. Pure translation does not generate any elastic forces so we can assume
that x0 = 0 and p0 = 0 without loss of generality. In the general case you have to replace xi

with xi−x0 and pi with pi−p0 in the following formulas. Let us describe a point inside the
undeformed tetrahedron by a weighted sum of the corner positions, i.e.

x = x1b1 +x2b2 +x3b3 = [x1,x2,x3]b. (4.25)

The transformed position p(x) will be a weighted sum of the deformed corner positions
using the same weights:

p(x) = p1b1 +p2b2 +p3b3 = [p1,p2,p3]b. (4.26)

Solving Eq. (4.25) for b and substituting into Eq. (4.26) yields

p(x) = [p1,p2,p3] [x1,x2,x3]
−1 x = Px (4.27)

This is a linear mapping with P a 3× 3 matrix. The part X̄ = [x1,x2,x3]
−1 is constant

throughout the simulation and can be pre-computed. Because p(x) is linear, we have

∇p = P and ∇u = P− I (4.28)

independent of the position x within the tetrahedron. This means we will end up with
constant strain and stress inside the tetrahedron. Using Green’s stress tensor we have

ε =
1
2
(∇u+[∇u]T +[∇u]T ∇u) (4.29)

CHAPTER 4. THE FINITE ELEMENT METHOD 29

and with the assumption of a Hookean material the stress is

σ = Eε (4.30)

with E defined in Eq. (4.19). Multiplying the stress tensor by a normal vector yields the
elastic force per area so for face (0,1,2) of the tetrahedron the force is

f0,1,2 = σ ·n0,1,2 ·A0,1,2 = σ [(p1−p0)× (p2−p0)] (4.31)

Finally, we distribute this force evenly among the vertices 0,1 and 2 and do the same for all
faces. Equations (4.27) through (4.31) yield a recipe for computing the forces f0, . . . f3 acting
on the vertices of a tetrahedron based on the deformed positions p0, . . .p3. As you can see,
the whole process is quite simple. It is just a step-by-step of process of computing quantities
based on previous ones. Also, we could easily replace Hooke’s law by any non-linear stress-
strain relationship without increasing the complexity of the computation significantly. The
resulting forces - position relationship computed this way is highly non-linear. A simple
simulation algorithm using explicit Euler integration could look like this

// initialization
(1) forall vertices i
(2) pi = xi

(3) initialize vi and mi

(4) endfor
(5) forall tetrahedra i = (i0, i1, i2, i3)
(6) X̄i = [xi1−xi0 ,xi2−xi0 ,xi3−xi0]

−1

(7) endfor
// simulation loop
(8) loop
(9) froall vertices i
(10) fi = fg + fcoll

i
(11) endfor
(12) forall tetrahedra i = (i0, i1, i2, i3)
(13) P = [pi1−pi0 ,pi2−pi0 ,pi3−pi0] · X̄i

(14) ∇u = P− I
(15) ε = 1

2(∇u+[∇u]T +[∇u]T ∇u)
(16) σ = Eε

(17) forall faces j = (j0, j1, j2) of tetrahedron i
(18) fface = σ [(p j1−p j0)× (p j2−p j0)]
(19) f j0 ← f j0 + 1

3 fface

(20) f j1 ← f j1 + 1
3 fface

(21) f j1 ← f j1 + 1
3 fface

(22) endfor
(23) endfor
(24) forall vertices i
(25) vi← vi +∆t fi/mi

(26) pi← pi +∆t vi

(27) endfor

30
Real Time Physics

Class Notes

(28) display the system every nth time
(29) endloop

This algorithm is very similar to the algorithm for simulating mass-spring systems. We
basically replaced the one dimensional springs connecting pairs of mass points by three di-
mensional hyper-springs connecting four mass points. The computation of the forces acting
at the adjacent vertices of such a hyper-spring is more expensive than computing spring
forces but it does not make the algorithm more difficult to understand or to implement.
Also, replacing the explicit Euler scheme by a Verlet or Runge-Kutta integrator would be
straight forward. All this comes from the fact, that all force evaluations are explicit.

For unconditional stability and the use of a global solver, implicit integration is needed.
In this case, things get more involved. Linearizing the spring force in Eq. (3.33) was not too
hard. Doing the same for the FEM-based forces is a bit more complicated. You have to work
through all the steps given in Eq. (4.27) through Eq. (4.31). The resulting formulas get more
complex and more computationally intensive to evaluate, especially for general stress-strain
relationships. Remember, this evaluation has to be done at every time step. For a spring
force connecting points i and j we derived local tangent stiffness matrices Ki,i, Ki, j, K j,i

and K j, j. In the case of a tetrahedron, the tangent stiffness matrix K is 12×12 dimensional.
It contains 4× 4 submatrices Ki, j, where Ki, j describes the interaction between vertex i
and vertex j. Because each vertex in the tetrahedron influences all others, the stiffness
matrix of the tetrahedron is dense. With the stiffness matrix, the tetrahedral forces can be
approximated as

f(p+∆tv) = f(p)+K|x (∆tv)+O(∆t2), (4.32)

where all vectors are 12 dimensional containing the 3 components of the 4 adjacent vertices
of the tetrahedron, i.e.

p = [pT
1 ,pT

2 ,pT
3 ,pT

4]T (4.33)

v = [vT
1 ,vT

2 ,vT
3 ,vT

4]T and (4.34)

f(p) = [f1(p1,p2,p3,p4)T , f2(p1,p2,p3,p4)T , f3(p1,p2,p3,p4)T , f4(p1,p2,p3,p4)T]T .
(4.35)

4.2.2 Linear FEM

If K was constant at all times, the simulation would obviously be much faster and more
suitable for implicit integration in real time. Let us see how we can make it constant. First
we have to decide where we want to evaluate K. The most natural choice is to evaluate it
at the equilibrium configuration so Kconst = K|x. Every other location would be biased in
some way. This choice has a further advantage. The first term on the right hand side of
Eq. (4.32) cancels out because the forces at the equilibrium configuration are zero and we

CHAPTER 4. THE FINITE ELEMENT METHOD 31

get

f(x+∆p) = f(x)+K|x (∆p) +O(|∆p|2) (4.36)

f(x+(p−x)) = K|x(p−x) +O(|p−x|2) (4.37)

f(p) = K|x(p−x) +O(|p−x|2). (4.38)

(4.39)

By omitting the higher order terms and writing K for K|x from now on we have a very
simple equation to compute the forces acting on the vertices of the tetrahedron given the
displacements of the vertices, namely

f(p) = K(p−x). (4.40)

This approximation is only valid close to the equilibrium because that is where the forces
were linearized. There are many applications in which the displacements remain small,
for instance when the stress distribution in a bridge or building have to be analyzed. In
general, if the deformable body does not undergo large deformations it is reasonable to use
this approximation.

But how do we compute K for a tetrahedron? We could linearize Eq. (4.27) through
Eq. (4.31) and evaluate what we get at p = x. There is a simpler more intuitive way to
do it though. Three restrictions make the forces linear to begin with so linearization is not
necessary at all. For this we have to

• use Cauchy strain ε = 1
2(∇u+[∇u]T),

• assume a linear stress-strain relationship, i.e. a Hookean material with σ = Eε

• and use the original positions of the vertices in Eq. (4.31) for the computation of the
face normals and face areas.

We will not go through the whole process of the derivation. Here is the final result, the
recipe to compute the stiffness matrix of a tetrahedron. First you compute the four auxiliary
vectors y0, y1,y2 and y3 as

 yT
1

yT
2

yT
3

= X−1 = [x1−x0,x2−x0,x3−x0]−1 (4.41)

y0 =−y1−y2−y3 (4.42)

With these, the 3×3 sub-matrix of K connecting vertex i and j (i, j ∈ 1 . . .4) can be directly
computed as

Ki, j =

 yi,x 0 0
0 yi,y 0
0 0 yi,z

 a b b
b a b
b b a

 y j,x 0 0
0 y j,y 0
0 0 y j,z

 (4.43)

+

 yi,y 0 yi,z

yi,x yi,z 0
0 yi,y yi,x

 c 0 0
0 c 0
0 0 c

 y j,y y j,x 0
0 y j,z y j,y

y j,z 0 y j,x,

 , (4.44)

32
Real Time Physics

Class Notes

where

a = V E
1−ν

(1+ν)(1−2ν)
, (4.45)

b = V E
ν

(1+ν)(1−2ν)
, (4.46)

c = V E
1−2ν

(1+ν)(1−2ν),
(4.47)

V = det(X), E is Youngs Modulus and ν the Poisson ratio. The center matrix on line (4.43)
is the upper left sub-matrix of E given in Eq. (4.19) and the matrices to the left and right of
it represent normal strain. The center matrix on line (4.44) is the lower right sub-matrix of
E and the matrices to the left and right correspond to shear strain, where the subscripts after
the comma are the spatial components of the vectors, not their derivatives.

4.3 Warped Stiffness

Figure 4.3: The pitbull with its inflated head (left) shows the artifact of linear FEM under
large rotational deformations. The correct deformation is shown on the right.

In the framework of linear FEM discussed in the previous section, the stiffness matrices
of all tetrahedra are constant, i.e. depend only on the rest configuration of the vertices and
can be precomputed. This makes the simulation fast and allows real-time simulation of high
resolution tetrahedra meshes. However, we have seen in Section 4.1.2 that Cauchy strain
cannot capture rotational deformations correctly (see Fig. 4.3). In graphics, this is a prob-
lem, because only large deformations and free rotational motion yield visually interesting
effects.

The technique of stiffness warping which we will discuss in this section solves this prob-
lem by explicitly extracting the rotational part of the deformation. The method removes the
visual artifacts under large rotational deformations and allows to use the constant stiffness
matrices of linear FEM. Let us see how this works.

4.3.1 Extraction of Rotation

If we write Ke for the stiffness matrix of a tetrahedral element e to distinguish it from the
stiffness matrix K of the entire mesh, the computation of the linear forces acting on the four
vertices of the element are

f = Ke · (p−x). (4.48)

CHAPTER 4. THE FINITE ELEMENT METHOD 33

x

p
)(xp−

)(1 xpR −−
e

pR 1−
e

eR

)(1 xpRKR −−
eee

)(1 xpRK −−
ee

Figure 4.4: To compute the elastic forces acting at the vertices of a tetrahedron, its de-
formed coordinates p are rotated back to an unrotated frame R−1

e p. There, the displace-
ments R−1

e p− x are multiplied with the stiffness matrix yielding the forces Ke(R−1
e p− x)

that are finally rotated back to the frame of the deformed tetrahedron by multiplying them
with Re.

Now comes the trick. Let us assume that we know the rotational part Re of the deformation
of the tetrahedron. We use this matrix to rotate the world coordinates p of the vertices back
into an unrotated configuration R−1

e p. For this to work, Re needs to be a 12× 12 matrix
containing four identical 3×3 rotation matrices along its diagonal. After the transformation,
the displacements are R−1

e p− x. The linear forces in this unrotated frame are Ke(R−1
e p−

x). Finally, the forces have to be moved back into the rotated current configuration of the
tetrahedron yielding

fwarped = ReKe(R−1
e p−x). (4.49)

This computation is fast. Also remember that for a rotation matrix R−1
e = RT

e . To use these
force in an implicit Euler scheme we substitute them into Eq. (3.23) and Eq. (3.24) which
yields

Mvt+1 = Mvt +∆t
(
ReKe(RT

e pt+1−x)+ fext
)

(4.50)

pt+1 = pt +∆tvt+1. (4.51)

Again, we substitute the second line into the first and get

Mvt+1 = Mvt +∆t
(
ReKe(RT

e (pt +∆tvt+1)−x)+ fext
)

(4.52)

(M−∆t2ReKeRT
e)vt+1 = Mvt +∆t

(
ReKe(RT

e pt −x)+ fext
)

(4.53)

(M−∆t2K′e)v
t+1 = Mvt +∆t

(
K′ept − f0 + fext

)
, (4.54)

where K′e = ReKeRT
e and f0 = ReKex. The last line is the linear equation for the new

velocities. All quantities except vt+1 are known at the current time step and form a linear

34
Real Time Physics

Class Notes

system for the new velocities. This is the equation for a single tetrahedron. The one for the
entire mesh is

(M−∆t2K′)vt+1 = Mvt +∆t
(
K′pt − f0 + fext

)
. (4.55)

Constructing the global stiffness matrix K from the element matrices Ke and the global right
hand side force offset is called element assembly. This process can be written as

K = ∑
e

ReKeRT
e (4.56)

f0 = ∑
e

ReKex. (4.57)

These are not valid equations as they stand here. On the left we have 3n dimensional quan-
tities, n being the number of mesh vertices, while on the right the quantities are 12 dimen-
sional due to the four vertices from a tetrahedral element. For the formulas to be valid, the
quantities on the right are made 3n dimensional as well by placing in the sub matrices and
vectors corresponding to the vertices of the tetrahedron at the right spots w.r.t. to the global
mesh numbering and filling the rest with zeros. The remaining question is how to get the
rotations Re of the tetrahedra.

4.3.2 Determining Element Rotation

From Eq. (4.27) we know that the non-translational part of the mapping from the original
configuration (x0,x1,x2,x3) to the current configuration (p0,p1,p2,p3) of a tetrahedron is
the 3×3 dimensional matrix

A = [p1−p0,p2−p0,p3−p0] [x1−x0,x2−x0,x3−x0]
−1 . (4.58)

The rotational part of A is the rotation we are looking for. There are several ways to con-
struct a rotation matrix from A, also called orthonormalization of A. The simples is the
Gram-Schmidt method. Let A = [a0,a1,a2] with ai the column vectors of A and the axes
of the transformation. We need to make sure that they all have unit length and that they are
perpendicular to each other. The Gram-Schmidt method computes the three columns of the
rotation matrix

r0 =
a0

|a0|
(4.59)

r1 =
a1− r0 ·a1

|a1− r0 ·a1|
(4.60)

r2 = r0× r1. (4.61)

The third line is non-Gram-Schmidt but simpler and makes sure that the resulting rotation
matrix R = [r0,r1,r2] is right handed. This procedure is dependent on the order in which
the axes are processed. The first axis of the rotation will always be aligned with the first
axis of the transformation for instance. This fact might yield some artifacts. Typically, this
is not a big issue. You just have to make sure that you keep the order the same throughout
the simulation.

A mathematically more correct and unbiased way to extract the rotations is to find the
rotation matrix R that is closest to A in the least squares sense. It is a well known fact

CHAPTER 4. THE FINITE ELEMENT METHOD 35

from linear algebra that each matrix can be factored into a rotation matrix and a symmetric
matrix, i.e.

A = RS. (4.62)

This factorization is called polar decomposition and should be used for unbiased and more
accurate results.

Chapter 5

Position Based Dynamics

Matthias Müller

Figure 5.1: Various deformable objects simulated using the Position Based Dynamics ap-
proach.

The most popular approaches for the simulation of dynamic systems in computer graph-
ics are force based. Internal and external forces are accumulated from which accelerations
are computed based on Newton’s second law of motion. A time integration method is
then used to update the velocities and finally the positions of the object. A few simulation
methods (most rigid body simulators) use impulse based dynamics and directly manipu-
late velocities. In this chapter we present an approach which omits the velocity layer as
well and immediately works on the positions. The main advantage of a position based ap-
proach is its controllability. Overshooting problems of explicit integration schemes in force
based systems can be avoided. In addition, collision constraints can be handled easily and
penetrations can be resolved completely by projecting points to valid locations.

36

CHAPTER 5. POSITION BASED DYNAMICS 37

5.1 Position Based Simulation

The objects to be simulated are represented by a set of N particles and a set of M constraints.
Each particle i has three attributes, namely

mi mass

xi position

vi velocity

A constraint j is defined by the five attributes

n j cardinality

C j : R3n j → R scalar constraint function

{i1, . . . in j}, ik ∈ [1, . . .N] set of indices

k j ∈ [0 . . .1] stiffness parameter

unilateral or bilateral type

.

Constraint j with type bilateral is satisfied if C j(xi1 , . . . ,xin j
) = 0. If its type is unilateral

then it is satisfied if C j(xi1 , . . . ,xin j
) ≥ 0. The stiffness parameter k j defines the strength of

the constraint in a range from zero to one.
Given this data and a time step ∆t, the simulation proceeds as follows:

(1) forall particles i
(2) initialize xi = x0

i ,vi = v0
i ,wi = 1/mi

(3) endfor
(4) loop
(5) forall particles i do vi← vi +∆twifext(xi)
(6) forall particles i do pi← xi +∆tvi

(7) forall particles i do generateCollisionConstraints(xi→ pi)
(8) loop solverIterations times
(9) projectConstraints(C1, . . . ,CM+Mcoll ,p1, . . . ,pN)
(10) endloop
(11) forall particles i
(12) vi← (pi−xi)/∆t
(13) xi← pi

(14) endfor
(15) endloop

Since the algorithm simulates a system which is second order in time, both, the positions
and the velocities of the particles need to be specified in (1)-(3) before the simulation loop
starts. Lines (5)-(6) perform a simple explicit forward Euler integration step on the veloci-
ties and the positions. The new locations pi are not assigned to the positions directly but are
only used as predictions. Non-permanent external constraints such as collision constraints

38
Real Time Physics

Class Notes

are generated at the beginning of each time step from scratch in line (7). Here the origi-
nal and the predicted positions are used in order to perform continuous collision detection.
The solver (8)-(10) then iteratively corrects the predicted positions such that they satisfy the
Mcoll external as well as the M internal constraints. Finally the corrected positions pi are
used to update the positions and the velocities. It is essential here to update the velocities
along with the positions. If this is not done, the simulation does not produce the correct
behavior of a second order system. As you can see, the integration scheme used here is very
similar to the Verlet method described in Eq. (3.19) and Eq. (3.20).

5.2 The System to be solved

The goal of the solver step (8)-(10) is to correct the predicted positions pi of the particles
such that they satisfy all constraints. The problem that needs to be solved comprises of a set
of M equations for the 3N unknown position components, where M is now the total number
of constraints. This system does not need to be symmetric. If M > 3N (M <3N) the system
is over-determined (under-determined). In addition to the asymmetry, the equations are in
general non-linear. The function of a simple distance constraint C(p1,p2) = (p1−p2)2−d2

yields a non-linear equation. What complicates things even further is the fact that collisions
produce inequalities rather than equalities. Solving a non-symmetric, non-linear system
with equalities and inequalities is a tough problem.

Let p be the concatenation [pT
1 , . . . ,pT

N]T and let all the constraint functions C j take the
concatenated vector p as input while only using the subset of coordinates they are defined
for. We can now write the system to be solved as

C1(p) � 0

. . .

CM(p) � 0,

where the symbol � denotes either = or ≥. As we saw in Section 3.5.1, Newton-Raphson
iteration is a method to solve non-linear symmetric systems with equalities only. The pro-
cess starts with a first guess of a solution. Each constraint function is then linearized in the
neighborhood of the current solution using

C(p+∆p) = C(p)+∇pC(p) ·∆p+O(|∆p|2) = 0. (5.1)

This yields a linear system for the global correction vector ∆p

∇pC1(p) ·∆p =−C1(p)
. . .

∇pCM(p) ·∆p =−CM(p),

where ∇pC j(p) is the 1×N dimensional vector containing the derivatives of the function
C j w.r.t. all its parameters, i.e. the N components of p. It is also the jth row of the linear

CHAPTER 5. POSITION BASED DYNAMICS 39

system. Both, the rows ∇pC j(p) and the right hand side scalars−C j(p) are constant because
they are evaluated at the location p before the system is solved. When M = 3N and only
equalities are present, the system can be solved by any linear solver, e.g. PCG. Once it
is solved for ∆p the current solution is updated as p← p + ∆p. A new linear system is
generated by evaluating ∇pC j(p) and −C j(p) at the new location after which the process
repeats.

If M 6= 3M the resulting matrix of the linear system is non-symmetric and not invert-
ible. [GHF+07] solve this problem by using the pseudo-inverse of the system matrix which
yields the best solution in the least-squares sense. Still, handling inequalities is not possible
directly.

5.3 The Non-Linear Gauss-Seidel Solver

In the position based dynamics appraoch, non-linear Gauss-Seidel is used. It solves each
constraint equation separately. Each constraint yields a single scalar equation C(p) � 0
for all the particle positions associated with it. The subsystem is therefore highly under-
determined. PBD solves this problem as follows. Again, given p we want to find a cor-
rection ∆p such that C(p + ∆p) = 0. It is important to notice that PBD also linearizes the
constraint function but individually for each constraint. The constraint equation is approxi-
mated by

C(p+∆p)≈C(p)+∇pC(p) ·∆p = 0. (5.2)

The problem of the system being under-determined is solved by restricting ∆p to be in the
direction of ∇pC which conserves the linear and angular momenta. This means that only
one scalar λ - a Lagrange multiplier - has to be found such that the correction

∆p = λ∇pC(p). (5.3)

solves (5.2). This yields the following formula for the correction vector of a single particle
i

∆pi =−s wi∇piC(p), (5.4)

where

s =
C(p)

∑ j w j|∇p jC(p)|2
(5.5)

and wi = 1/mi.
As mentioned above, this solver linearizes the constraint functions. However, in con-

trast to the Newton-Raphson method, the linearization happens individually per constraint.
Solving the linearized constraint function of a single distance constraint for instance yields
the correct result in a single step. Because the positions are immediately updated after a
constraint is processed, these updates will influence the linearization of the next constraint
because the linearization depends on the actual positions. Asymmetry poses no problem
because each constraint produces one scalar equation for one unknown Lagrange multiplier
λ . Inequalities are handled trivially by first checking whether C(p)≥ 0. If this is the case,
the constraint is simply skipped.

We have not considered the stiffness k of the constraint so far. There are several ways of
incorporating the it. The simplest variant is to multiply the corrections ∆p by k ∈ [0 . . .1].

40
Real Time Physics

Class Notes

Figure 5.2: Projection of the constraint C(p1,p2) = |p1−p2|− d. The corrections ∆pi are
weighted according to the inverse masses wi = 1/mi.

However, for multiple iteration loops of the solver, the effect of k is non-linear. The remain-
ing error for a single distance constraint after ns solver iterations is ∆p(1− k)ns . To get a
linear relationship we multiply the corrections not by k directly but by k′ = 1− (1− k)1/ns .
With this transformation the error becomes ∆p(1− k′)ns = ∆p(1− k) and, thus, becomes
linearly dependent on k and independent of ns as desired. However, the resulting mate-
rial stiffness is still dependent on the time step of the simulation. Real time environments
typically use fixed time steps in which case this dependency is not problematic.

5.4 Constraint Examples

5.4.1 Stretching

To give an example, let us consider the distance constraint function C(p1,p2) = |p1−p2|−
d. The derivative with respect to the points are ∇p1C(p1,p2) = n and ∇p2C(p1,p2) = −n
with n = p1−p2

|p1−p2| . The scaling factor s is, thus, s = |p1−p2|−d
1+1 and the final corrections

∆p1 =− w1

w1 +w2
(|p1−p2|−d)

p1−p2

|p1−p2|
(5.6)

∆p2 = +
w2

w1 +w2
(|p1−p2|−d)

p1−p2

|p1−p2|
(5.7)

which are the formulas proposed in [Jak01] for the projection of distance constraints (see
Figure 5.2). They pop up as a special case of the general constraint projection method.

5.4.2 Bending

In cloth simulation it is important to simulate bending in addition to stretching resistance.
To this end, for each pair of adjacent triangles (p1,p3,p2) and (p1,p2,p4) a bilateral bending
constraint is added with constraint function

Cbend(p1,p2,p3,p4) =

acos
(

(p2−p1)× (p3−p1)
|(p2−p1)× (p3−p1)|

· (p2−p1)× (p4−p1)
|(p2−p1)× (p4−p1)|

)
−ϕ0,

stiffness kbend . The scalar ϕ0 is the initial dihedral angle between the two triangles and kbend
is a global user parameter defining the bending stiffness of the cloth (see Figure 5.3). The
advantage of this bending term over adding a distance constraint between points p3 and p4

CHAPTER 5. POSITION BASED DYNAMICS 41

Figure 5.3: For bending resistance, the constraint function C(p1,p2,p3,p4) = arccos(n1 ·
n2)−ϕ0 is used. The actual dihedral angle ϕ is measure as the angle between the normals
of the two triangles.

Figure 5.4: Constraint function C(q,p1,p2,p3) = (q−p1) ·n− h makes sure that q stays
above the triangle p1,p2,p3 by the the cloth thickness h.

or over the bending term proposed by [GHDS03] is that it is independent of stretching. This
is because the term is independent of edge lengths.

5.4.3 Triangle Collisions

The handling of self collisions within cloth can be handled by an additional unilateral con-
straint. For vertex q moving through a triangle p1, p2, p3, the constraint function reads

C(q,p1,p2,p3) = (q−p1) ·
(p2−p1)× (p3−p1)
|(p2−p1)× (p3−p1)|

−h, (5.8)

where h is the cloth thickness. If the vertex enters from below with respect to the triangle
normal, the constraint function has to be

C(q,p1,p2,p3) = (q−p1) ·
(p3−p1)× (p2−p1)
|(p3−p1)× (p2−p1)|

−h (5.9)

5.4.4 Volume Conservation

For tetrahedral meshes it useful to have a constraint that conserves the volume of single
tetrahedra. Such a constraint has the form

42
Real Time Physics

Class Notes

C(p1,p2,p3,p4) =
1
6

((p2−p1)× (p3−p1)) · (p4−p1)−V0, (5.10)

where p1, p2, p3 and p4 are the four corners of the tetrahedron and V0 its rest volume.

Figure 5.5: The image shows a mesh that is simulated using stretching and bending con-
straints. The top row shows (kstretching,kbending) = (1,1), (1

2 ,1) and (1
100 ,1). The bottom row

shows (kstretching,kbending) = (1,0), (1
2 ,0) and (1

100 ,0).

5.4.5 Shape Matching

Figure 5.6: First, the original shape x0
i is matched to the deformed shape xi. Then, the

deformed points xi are pulled towards the matched shape gi.

Shape Matching can be used to formulate a constraint for the entire set of particles. No
connectivity is needed in this case. In correspondence to rest lengths, rest angles and rest
volumes in the previous constraints, this constraint needs the original positions of all the
particles x0

i . We do not formulate the constraint using a function C(. . .) but describe the
projection of the points due to this constraint directly.

In order to find the projected positions, a shape matching problem with a priori known
correspondences has to be solved: Given two sets of points x0

i and pi, find the rotation

CHAPTER 5. POSITION BASED DYNAMICS 43

matrix R and the translation vectors t and t0 which minimize

∑
i

wi(R(x0
i − t0)+ t−pi)2, (5.11)

where the wi are weights of individual points. The natural choice for the weights is wi = mi.
The optimal translation vectors turn out to be the center of mass of the initial shape and the
center of mass of the actual shape, i. e.

t0 = x0
cm = ∑i mix0

i

∑i mi
, t = xcm = ∑i mipi

∑i mi
, (5.12)

which is physically plausible. Finding the optimal rotation is slightly more involved. Let
us define the relative locations qi = x0

i − x0
cm and pi = xi− xcm of points with respect to

their center of mass and let us relax the problem of finding the optimal rotation matrix R to
finding the optimal linear transformation A. Now, the term to be minimized is ∑i mi(Aqi−
pi)2. Setting the derivatives with respect to all coefficients of A to zero yields the optimal
transformation

A = (∑
i

mipiqT
i)(∑

i
miqiqT

i)−1 = ApqAqq. (5.13)

The second term Aqq is a symmetric matrix and, thus, contains only scaling but no rotation.
Therefore, the optimal rotation R is the rotational part of Apq which can be found via a polar

decomposition Apq = RS, where the symmetric part is S =
√

AT
pqApq and the rotational part

is R = ApqS−1. Finally, the projected positions can be computed as

pi = R(x0
i −x0

cm)+xcm. (5.14)

Linear Deformations

The method described so far can only simulate small deviations from the rigid shape. To
extend the range of motion, the linear transformation matrix A computed in (5.13) can be
used. This matrix describes the best linear transformation of the initial shape to match the
actual shape in the least squares sense. Instead of using R in (5.14) to compute the gi,
we use the combination βA +(1−β)R, where β is an additional control parameter. This
way, the goal shape is allowed to undergo a linear transformation. The presence of R in the
sum ensures that there is still a tendency towards the undeformed shape. To make sure that
volume is conserved, we divide A by 3

√
det(A) ensuring that det(A) = 1. For the standard

approach we only need to compute Apq. Here, we also need the matrix Aqq = (∑i miqiqT
i)−1.

Fortunately, this symmetric 3×3 matrix can be pre-computed.

Quadratic Deformations

Linear transformations can only represent shear and stretch. To extend the range of motion
by twist and bending modes, we move from linear to quadratic transformations. We define
a quadratic transformation as follows:

gi = [A Q M]q̃i, (5.15)

44
Real Time Physics

Class Notes

Figure 5.7: Visualization of all 3× 9 modes defined by the coefficients of Ã = [A Q M]
defined in (5.15).

where gi ∈ R3, q̃ = [qx,qy,qz, q2
x ,q

2
y ,q

2
z , qxqy,qyqz,qzqx]T ∈ R9, A ∈ R3×3 contains the

coefficients for the linear terms, Q ∈ R3×3 the coefficients for the purely quadratic terms
and M ∈ R3×3 the coefficients for the mixed terms. With Ã = [A Q M] ∈ R3×9 we now
have to minimize ∑i mi(Ãq̃i−pi)2. The optimal quadratic transformation turns out to be

Ã = (∑
i

mipiq̃T
i)(∑

i
miq̃iq̃T

i)−1 = ÃpqÃqq. (5.16)

Again, the symmetric Ãqq ∈ R9×9 as well as the q̃i can be pre-computed. Analogous to the
linear case, we use β Ã+(1−β)R̃ to compute the goal shape, where R̃ ∈ R3×9 = [R 0 0].
The algorithm based on quadratic deformations is a computationally cheap imitation of
methods using modal analysis. The linear shear and stretch modes and the additional bend
and twist modes are shown in Fig. 5.7.

Chapter 6

Rigid Body Simulation
Matthias Müller

Rigid bodies play a central role in real-time applications such as computer games be-
cause most objects around us can be considered as non-deformable. This is why the core
of most game physics engines is a rigid body solver. Representing objects as rigid bodies
is very effective, both in terms of simulation speed and memory footprint. Simulating rigid
bodies in free flight and handling dynamic collisions is not that hard. Surprisingly it is
much harder to stably simulate stacks of rigid bodies at rest than to simulate an explosion in
which many objects interact with each other dynamically. In the resting scenario the player
will notice even tiny jittering so impulse exchanges between interacting bodies have to be
computed accurately and consistently. In the explosion scenario is is much harder to see
whether objects behave in a physically correct way or not.

In the first part of this chapter, we will think of a rigid body as a set of point masses
connected by springs of infinite stiffness. This allows us to start from what we learned in
Chapter 3 about mass spring systems. Later, we will get rid of the particle representation.

45

46
Real Time Physics

Class Notes

6.1 Linear Motion

We represent a rigid body by particles having masses mi, original positions x̄i, actual posi-
tions xi and velocities vi. The original and current center of mass are given by the mass-
weighted sum of the positions of the particles as

x̄ =
1
M ∑

i
mi x̄i (6.1)

x =
1
M ∑

i
mi xi, (6.2)

where M = ∑i mi is the total mass of the body. We will now reorder the terms a bit to get

Mx = ∑
i

mixi (6.3)

Mẍ = ∑
i

miẍi (6.4)

Mẍ = ∑
i

fi (6.5)

Mẍ = F, (6.6)

where we have used Newton’s second law and F = ∑i fi. Thus, for linear motion the entire
rigid body can be represented by a single particle at the center of mass with the total mass
of the particles on which the sum of all particle forces acts.

6.2 Angular Motion

For linear motion, the assumption of rigidity let us replace individual particles by a single
particle at the center of mass with the total mass of the body. The rigidity constraint also
simplifies angular motion of the particles about the center of mass. On a rigid body, all the
particles have to have the same angular velocity. Let us first look at Newton’s second law
for the angular case. The angular quantity that corresponds to linear impulse pi = mi ẋ is
called angular momentum and is defined as.

Li = ri× (miẋi) = ri×pi (6.7)

where ri is the current distance vector from the center of mass to the particle, i.e. ri = xi−x.
The cross product makes sure that only the part of the impulse perpendicular to the radius,
i.e. along the tangent of the rotation is considered. The quantity that corresponds to force is
called torque τi and defined as

τi = ri× fi. (6.8)

In correspondence with Eq. (6.6), Newton’s second law for the angular case reads

∑
i

ri× fi =
d
dt ∑

i
ri×mi ẋ

τ = L̇.

(6.9)

CHAPTER 6. RIGID BODY SIMULATION 47

At this point we use the fact that all particles have the same rotational velocity ω . This
allows us to express the angular part of their velocity as

ẋi = ω× ri. (6.10)

where ω is the angular velocity of the entire body. Using this fact we can simplify the
expression for the angular momentum

L = ∑
i

ri×mi ẋ

= ∑
i

ri×mi ω× ri

= ∑
i
−mi ri× ri×ω

= ∑
i
−mi skew(ri)skew(ri)ω

= Jω,

(6.11)

where skew(r) ∈ R3×3 is the matrix with the property skew(r)x = r×x. Because ω is the
same for all particles, it can be pulled out of the sum while the remaining part is called the
moment of inertia or inertia tensor

J ∈ R3×3 = ∑
i
−mi skew(ri)skew(ri) (6.12)

Note that J depends on the current orientation of the rigid body. Given the current orienta-
tion as a rotation matrix R the current inertia tensor can computed from the one related to
the original pose by using J = RJ̄RT . There are four quantities that describe the state of a
rigid body, namely

• the position of the center of mass x,

• the orientation represented by a rotation matrix R,

• the linear velocity of the center of mass ẋ and

• the angular velocity ω about the center of mass.

In rigid body simulators, the orientation is often represented by a quaternion. The orien-
tation of a rigid body is a three dimensional quantity. A matrix has six additional degrees
of freedom while a quaternion only has one additional dimension. Due to numerical errors
in the time integration, both representations drift away from representing true orientations.
This problem is more severe for matrices. Here we stick with the matrix representation be-
cause it is easier to understand. Also, one can always go back and forth from a quaternion
to a matrix if needed.

It is more convenient to use the linear momentum p = Mẋ instead of ẋ and the angular
momentum L = Jω instead of ω . The state of a rigid body can then be expressed by

S(t) =


x(t)
R(t)
p(t)
L(t)

 . (6.13)

48
Real Time Physics

Class Notes

In order to simulate the body we need to know how this state vector changes over time,
i.e. we need to know its time derivative Ṡ. First, we have Newton’s second law saying that

ṗ = F

and from the definition of the linear momentum we have

ẋ = M−1p.

while in the angular case Newton’s second law states that

L̇ = τ.

The last piece is a bit more involved. What is Ṙ? The angular velocity ω rotates a vector
around the origin yielding ẋ = ω×x. Likewise ω rotates the axes of R = [r1,r2,r3] so that
Ṙ = [ω × r1,ω × r2,ω × r3] = skew(ω)R. The angular velocity ω can be computed via
ω = J−1L while the inverse of the current inertia J−1 is related to the inverse of the original
inertia tensor J̄−1 by J−1 = RJ̄−1RT . This yields the final equation of motion for the rigid
body:

Ṡ =


ẋ
Ṙ
ṗ
L̇

=


M−1p
skew(RJ̄−1RT L)R
F
τ

 . (6.14)

A simulator starts with an initial condition for the state of the rigid body and then integrates
Eq. (6.14) in time. Using explicit Euler integration, a simulation algorithm would look like
this:

// initialization
(1) M← ∑i mi

(2) x̄← (∑i x̄i)/M
(3) r̄i← x̄i− x̄
(4) J̄−1← (−∑i miskew(r̄i)skew(r̄i))

−1

(5) initialize x,v,R,L
(6) J−1← RJ̄−1RT

(7) ω ← J−1L
// simulation
(8) loop
(9) F← ∑i fi

(10) τ ← ∑i ri× fi

(11) x← x+∆tv
(12) v← v+∆tF/M
(13) R← R+∆t skew(ω)R
(14) L← L+∆tτ
(15) J−1← RJ̄−1RT

(16) ω ← J−1L
(17) ri← Rr̄i

CHAPTER 6. RIGID BODY SIMULATION 49

(18) xi← x+ ri

(19) vi← v+ω× ri

(20) endloop

6.3 Collision handling

There are two non-degenerate cases for collisions of two rigid bodies A and B, namely
corner-face collisions and edge-edge collisions. The contact normal n is an important quan-
tity in rigid body collision handling. In the case of a corner-face collision, n is perpendicular
to the collision face. When two edges collide, n points along the cross product of the di-
rection of the two edges. Forces and impulses are always exchanged along n and only the
component of contact velocities along n have to be considered. Therefore, all the quantities
relevant for collision handling at a given contact point can be represented by scalars along
n which simplifies things quite a lot!

In the real world, fully rigid bodies do not exist. In almost rigid objects, impacts cause
tiny deformations at the contact point which, in turn, cause high stress forces that accelerate
the bodies away from each other. Only after a finite amount of time, the bodies are fully
separated again. The stiffer the materials, the stronger the stresses and the shorter the re-
sponse time. So hypothetically, for infinitely stiff materials, the response time is zero and
the velocities change immediately. We use the symbols u− and u+ for velocities before and
after the collision along the contact normal, so

u−A = (v−A +w−A × rA) ·n
u−B = (v−B +ω

−
B × rB) ·n,

(6.15)

where rA and rB are the positions of the collision point relative the center of mass of body
A and B respectively. The relative velocity at the collision point before the collision is

u−rel = u−A −u−B (6.16)

Instead of using a collision force we use a collision impulse p = np which changes this
relative velocity immediately. Because it acts parallel to the contact normal it can be rep-
resented by a scalar p. For a resting contact and a bouncy contact the impulse p has to be
chosen such that the relative velocity after the collision

u+
rel ≥ 0

u+
rel =−εu−rel

(6.17)

respectively, where ε is the coefficient of restitution. For ε = 1 the collision is fully elastic
while for ε = 0 it is fully inelastic. An impulse p changes the linear and angular velocities
of body A via

p = MA∆vA

rA×p = JA∆ωA
(6.18)

50
Real Time Physics

Class Notes

which results in a change in uA of

∆uA = [∆vA +∆ωA× rA] ·n (6.19)

=
[
pM−1

A +(J−1
A (rA×p))× rA

]
·n (6.20)

= p
[
nM−1

A +(J−1
A (rA×n))× rA

]
·n (6.21)

= p
[
n ·nM−1

A +(J−1
A (rA×n))× rA ·n

]
(6.22)

= p
[
M−1

A +(rA×n)T J−1
A (rA×n)

]
(6.23)

= p wA (6.24)

From step (6.22) to (6.23), the fact that the term after the plus sign is a triple product was
used. The formula for ∆ub is obviously analogous. The scalar wA can be computed from
quantities known before the collision. We are now ready to solve for p using Eq. (6.17):

u+
rel = u−rel +∆uA−∆uB

= u−rel + pwA− (−pwB)

= u−rel + p(wA +wB) !=−εu−rel

(6.25)

It is important to note that while p is applied to body A, −p is applied to body B. Solving
for p yields

p =
−(1+ ε)u−rel

wA +wB
(6.26)

Once p is known, the kinematic quantities can be updated using

v+
A = v−A + p nM−1

A

v+
B = v−B − p nM−1

B

ω
+
A = ω

−
A + p J−1

A (rA×n)

ω
+
B = ω

−
A − p J−1

B (rB×n)

(6.27)

6.4 Resting Contacts

In a resting configuration there are multiple (say N) contact points for which the solver
has to make sure that u+

rel >= 0. The change of the velocity ∆ui
A of body A at contact i is

influenced by all the impulses of contacts j that influence body A:

∆ui
A =

[
∑

j
p jM−1

A +∑
j
(J−1

A (r j
A×p j))× ri

A

]
·ni

= ∑
j

p j

[
n jM−1

A +(J−1
A (r j

A×n j))× ri
A

]
·ni

= ∑
j

p j

[
ni ·n jM−1

A +(ri
A×ni)T J−1

A (r j
A×n j)

]
= ∑

j
p j wi j

A

(6.28)

CHAPTER 6. RIGID BODY SIMULATION 51

This yields a linear equation for each contact

ui+
rel = ui−

rel +∆ui
A−∆ui

B

= ui−
rel +∑

j
(σ j

A wi j
A −σ

j
B wi j

B) p j

= ui−
rel +∑

j
ai j p j

≥ 0

(6.29)

which is a system of N inequalities for the scalars pi. The coefficient σ
j

A is +1 if p j is
applied to body A in the direction of n j and −1 if p j is applied to body A in the opposite
direction of n j. It is zero if p j is not applied to body A at all. The coefficients σ

j
B are defined

similarly. We use the following definitions

A = [ai j] ∈ RN×N

p = [p1, p2, . . . pN]T ∈ RN×1

u = [u1−
rel ,u

2−
rel , . . . ,u

N−
rel]T ∈ RN×1

c = [c1,c2, . . .cN]T ∈ RN×1,

(6.30)

where ci = |ui−
rel| are the magnitudes of the pre impact relative velocities. Now we can state

the problem as

Ap+u≥ 0
p≥ 0,

(6.31)

where the symbol ≥ is used componentwise. All the vectors p within the polytope defined
by the inequalities are solutions to this problem. To get a unique solution we need additional
constraints. One additional constraint requires Ap + u ≤ c, i.e. that kinetic energy cannot
be gained by the collision. Among all remaining solution vectors p we want the one that
minimizes the quadratic function |Ap + u|2 namely the magnitudes of the post velocities.
This is a convex quadratic programming problem (QP) that can be formulated as a linear
complementarity problem (LCP).

6.5 Dynamic and Static Friction

For simulating friction, velocities perpendicular to the contact normal n have to be consid-
ered. Let p be the magnitude of the impulse along n computed as shown above. One way
to do this is to add two additional constraints to each contact point with normals n⊥1 and
n⊥2 perpendicular to n and to each other. The scalar impulses p⊥1 and p⊥2 along these two
additional directions have to be solved for with the original impulses simultaneously.

In the case of dynamic friction, the condition must hold that
√

p⊥2
1 + p⊥2

2 = cdyn p where
cdyn is the dynamic friction constant. The three impulse magnitudes can be thought of as
lying on a cone centered at the collision point.

For static friction the situation is different. If p≥ pmax the solver has to make sure that
the relative velocities along the tangential directions are zero by applying the appropriate

52
Real Time Physics

Class Notes

impulses p⊥1 and p⊥2 . The scalar pmax is a material parameter. It is non-trivial to include
these constraints into the non-frictional problem. Fortunately there is a very simple way
to solve both, the original LCP as well as the additional friction constraints, namely the
Gauss-Seidel technique.

6.6 Real Time Simulation using a Gauss-Seidel Solver

The main drawback of a Gauss-Seidel solver (GS) is its slow convergence in comparison to
global solvers. There are many advantages though. The most important one is the simplic-
ity with which the complex LCP including static and dynamic friction constraints can be
solved. In addition, ill posed and over constraint problems are handled in a robust manner.
These properties are ideal for the use in computer games and other real time environments.

The general idea is very simple. Instead of considering the global problem, GS iterates
through each constraint one after the other, computes impulses locally using Eq. (6.26) and
updates the kinematic quantities of the participating bodies immediately using Eq. (6.27).
Before such a step, the relative velocity along the constraint is computed using the current
linear and angular velocities of the bodies. If this velocity is greater than zero, the constraint
is simply skipped. The solver also makes sure that the impulses applied are always larger
than zero which can be easily done when looking at one single constraint. For static friction,
the tangential constraints solve for zero velocities but only if the current normal impulse is
above the static friction threshold, which can be different for the two directions resulting in
an-isotropic friction.

An important problem that comes with a velocity based approach is drift. Making sure
that relative velocities are zero does not prevent penetrations. Once there is a penetration
due to numerical errors for instance, the solver does not remove them. The solution to this
problem is to move the bodies apart. One has to be careful to do this correctly. It is not
correct to apply a simple translation. Rather, one has to solve for velocities that remove the
penetration when multiplied by the time step.

Chapter 7

Reduced-order deformable
models

53

Chapter 8

User Interaction and Control

54

Chapter 9

Introduction to Fluids
Nils Thuerey

As fluids are everywhere around us, they are an important part of physical simulations
for virtual environments. In addition, correctly solving the underlying equations can result
in complex and beautiful structures and motions. Numerical simulations of fluid flow have
been used for a long time in the field of computer graphics, although mainly for off-line
animations (an example is shown in Fig. 9.1). In [YUM86], fluid simulations were first used
for the generation of animated textures. In 1990, Kass and Miller [KM90] demonstrated the
practical use and efficiency of height field fluids. First three dimensional fluid simulations
were performed in [FM96] by Foster and Metaxas.

The stable fluids approach, as presented by Jos Stam in [Sta99], made it possible to
guarantee stability of the advection step, and lead to a variety of applications in the field.
With this approach, level-set based simulations of liquids were made popular by the group
of Ron Fedkiw, starting with [FF01, EMF02]. Since then, a variety of extensions and im-
provements of the original algorithm have been proposed. Fluid simulations have been
used for fire [NFJ02], large scale smoke [RNGF03], particle based explosions [FOA03],
and were coupled to rigid bodies [CMT04, BBB07]. A first real-time GPU implementa-
tion of a level-set based fluid solver, yielding a high performance, was demonstrated in
[CLT07]. Due to the long run-times, control of off-line simulations also became an im-
portant topic [MTPS04, SY05a, SY05b, TKPR06]. We will discuss eulerian fluid sim-
ulations, based on this semi Lagrangian method, within the field of real-time applica-

Figure 9.1: A typical off-line fluid animation: liquid is poured into a glass shaped obstacle.
Animation and rendering require many hours to compute.

55

56
Real Time Physics

Class Notes

tions in Chapter 10. In contrast to the previously mentioned work, the group of James
O’Brien worked on algorithms to use dynamic meshes instead of equidistant Cartesian grids
[KFCO06, FOK05, CFL+07]. However, due to the complexity of these approaches, they
are not aimed at real-time simulations, and will not be discussed in the following. A differ-
ent approach to guided fluid simulations was presented by Angelidis et al. in [AN05] and
[ANSN06]. It is based on vortex filaments, and allows for real-time smoke simulations and
control.

Due to the limitations of an underlying grid, particle based approaches are especially
popular for real-time simulations, as they do not require a grid throughout the whole do-
main. They are based on the so-called smoothed particle hydrodynamics (SPH) that were
originally developed for astro-physics applications [Mon92]. The first SPH paper to target
the real-time simulation of liquids was [MCG03]. This method was later extended to, e.g.,
handle multi-phase fluids in [MSKG05]. As SPH does not require a global correction step
for the incompressibility of the fluid, the resulting compressibility artifacts are still a topic
of current research activities [BT07].

Due to the simplicity and efficiency of the underlying algorithm, lattice Boltzmann
methods (LBM) have become an interesting alternative to the approaches mentioned above.
They have been demonstrated, e.g., in [WZF+03, LWK03, WLMK04] for wind simulations
with interacting bodies. In [WWXP06], the LBM was used to simulate falling snow in real-
time. It was also used for simulations of free surface flows, e.g., in [TR04] and [TRS06].
We will explain how to implement a fluid solver with LBM later on in Section 10.2.

For real-time applications, the shallow water equations (SWE) are especially interest-
ing. The SWE are a reduced form of the Navier-Stokes equations, and can be solved very ef-
ficiently due to their two-dimensional nature. In simplified versions, such two-dimensional
methods have been used, e.g., for generating splashes [OH95] or coupled to terrains and
rigid bodies [CdVLHM97]. In [LvdP02], an algorithm to apply a semi Lagrangian advec-
tion to the SWE with an implicit time integration scheme was introduced. Moreover, the
underlying algorithm was extended to achieve a variety of different effects in real-time, such
as bubble dynamics [TSS+07], or terrain erosion [MDH07]. A different class of methods
for wave generation are the spectral approaches, e.g., as described in [HNC02], [Lov03], or
in [Tes04]. These approaches are especially suitable for deep water waves with dispersive
effects, but will not be discussed in more detail here. In Chapter 11, we will explain how to
solve the SWE, and describe the handling of different boundary conditions, to achieve, e.g.,
fluid flowing through a terrain.

Chapter 10

Grid Based Fluid Simulation
Nils Thuerey

10.1 Navier-Stokes Equations

The motion of a fluid is typically computed by solving the Navier-Stokes (NS) equations 1,
which describe the fluid in terms of a continuous velocity field u and a pressure p. In the
following, we will give an overview of how a simplified form of these equations is com-
monly solved in the field of computer graphics. The next section will discuss an alternative
solution approach that is particularly well suited for parallel implementations such as GPUs.
For more detailed information, e.g., on the derviation of the equations, there are many good
text books on the topic. We can, e.g., recommend [KC04]. Note that a very detailed descrip-
tion of how to solve the NS equations directly can be found in the notes of the SIGGRAPH
course on fluid simulation [RB07].

The NS equations are basically two conservation equations, that have to be fulfilled in
order to give the motion of an incompressible fluid. The first one is very simple - it ensures
the conservation of mass in the velocity field. Assuming a constant density of the fluid, this
can be written as

∇v = 0 . (10.1)

It simply means that when some quantity is advected in the velocity field v, a smoke density,
for instance, the overall mass of this quantity will not change (assuming that we make no
error computing this advection). For fluids it is of course highly important to keep the mass
constant - otherwise it will look like the fluid evaporates over time, or that drops disappear
while flying through the air. The second, and more complicated part, of the NS equations

1The origins of the well established Navier-Stokes equations reach back to Isaac Newton, who, around
1700, formulated the basic equations for the theoretical description of fluids. These were used by L. Euler half
a century later to develop the basic equations for momentum conservation and pressure. Amongst others, Louis
M. H. Navier continued to work on the fluid mechanic equations at the end of the 18th century, as did Georg G.
Stokes several years later. He was one of the first to analytically solve fluid problems for viscous media. The
NS equations could not be practically used up to the middle of the 20th century, when the numerical methods,
that are necessary to solve the resulting equations, were developed.

57

58
Real Time Physics

Class Notes

ensures that the momentum of the fluid is preserved. It can be written as

ρ

(
∂u
∂ t

+u ·∇u
)

︸ ︷︷ ︸
advection

+ ∇P︸︷︷︸
pressure

= ν4u︸ ︷︷ ︸
viscosity

+ ρg︸︷︷︸
forces

. (10.2)

This equation is a lot more complicated, but can be understood by identifying its individual
terms. The first one, the advection terms, deals with just that - the advection of the velocity
field of the fluid with itself. The pressure term involves the gradient of the pressure, so it
essentially makes sure the fluid tries to flow away from regions with high pressure. The
viscosity term, where ν is a parameter to account for the different ”thicknesses” of fluids
(honey, e.g., has a much higher viscosity than water), involves the second derivates of the
velocities, and as such, performs a smearing out of the information in the velocity field.
As we are usually interested in computing fluids with a very low viscosity, such as water
and air, this term is completely left out (the NS equations without this term are then called
the Euler equations). We can do this because the method to solve the equations normally
introduces a fair amount of error, which is noticeable as a viscosity. Likewise, the more
accurately the equations are solved, the more lively (and less viscous) the fluid will look.

Luckily, the different parts of this equation can be computed separately, which signif-
icantly simplifies the algorithm. As mentioned before, the viscosity term can be left out.
Adding the forces (this could, e.g., include gravity) to the velocities is typically also very
easy. Computing the advection is somewhat more difficult. A very elegant and stable way to
solve this is to use a semi-Lagrangian scheme [Sta99]. This step will be described in more
detail later for solving the shallow water equations. It can be computed very efficiently and
is unconditionally stable. This is very useful, as the nonlinear terms of the advection are
usually very problematic for stability when using other schemes such as finite differences.

The last, and most complex term to handle in the equations is the pressure term. Given
some the velocity field computed from the previous steps, we compute the pressure values in
a way that ensures that (10.1) holds. It turns out that a Poisson equation with corresponding
boundary conditions has to be solved for the pressure. This is a well known equation in
mathematics: it is a partial differential equation that requires a system of linear equations
to be solved. Typically, this is done with an iterative method, such as a conjugate gradient
solver. It is usually by far the most expensive part of the algorithm. Once a correct pressure
is computed, the velocity field can be adjusted to be divergence free, and describes the state
of the fluid for the next time step.

These steps: adding forces, advecting the velocities, and computing a pressure correc-
tion are repeated for each time step. They are used to compute the motion of a single fluid
phase, and can be used to, e.g., simulate swirling smoke. For effects such as liquids, it is
in addition to the basic algorithm necessary to compute the motion and behavior of the in-
terface between the liquid and its surrounding (usually air). We will only cover two-phase
flows in the form of the shallow water equations in Chapter 11. In the next section we will
explain a different approach to compute the motion of a fluid that is based on a simpler
algorithm.

CHAPTER 10. GRID BASED FLUID SIMULATION 59

10.2 Lattice Boltzmann Methods

This section will describe the basic LBM algorithm. The lattice Boltzmann formulation is
also a grid-based method, but originated from the field of statistical physics 2. Although it
comes from a descriptions on the molecular level, the method can still be used to compute
fluids on a larger scale. For simulations with LBM, the simulation region is typically rep-
resented by a Cartesian and equidistant grid of cells. Each cell only interacts with cells in
its direct neighborhood. While conventional solvers directly discretize the NS equations,
the LBM is essentially a first order explicit discretization of the Boltzmann equation in a
discrete phase-space. It can also be shown, that the LBM approximates the NS equations
with good accuracy. A detailed overview of the LBM and derivations of the NS equations
from LBM can be found in [WG00] and [Suc01], among others.

The LBM has several advantages, that make it interesting for real-time applications.
First, a timestep with LBM only requires a single pass over the computational grid. So it
maps very well to parallel architectures such as GPUs. On the other hand, as the LBM per-
forms an explicit timestep, the allowed velocities in the simulation are typically limited to
ensure stability. Another interesting aspect is that each cell in LBM contains more informa-
tion than just the velocity and pressure or density. This makes it possible to handle complex
boundaries with high accuracy even on relatively coarse grids. The following section will
describe the standard LBM with simple boundary conditions, and a turbulence model to
ensure stability.

10.3 The Basic Algorithm

The basic lattice Boltzmann (LB) algorithm consists of two steps, the stream-step, and
the collide-step. These are usually combined with no-slip boundary conditions for the
domain boundaries or obstacles. The simplicity of the algorithm is especially evident
when implementing it, which, for the basic algorithm, requires roughly a single page of
C-code. Using a LBM, the particle movement is restricted to a limited number of direc-
tions. Here, a three-dimensional model with 19 velocities (commonly denoted as D3Q19)
will be used. Alternatives are models with 15 or 27 velocities. However, the latter one
has no clear advantages over the 19 velocity model, while the model with 15 velocities
has a decreased stability. The D3Q19 model is thus usually preferable as it requires less

2The Boltzmann equation itself has been known since 1872. It is named after the Austrian scientist Ludwig
Boltzmann, and is part of the classical statistical physics that describe the behavior of a gas on the microscopic
scale. The LBM follows the approach of cellular automata to model even complex systems with a set of simple
and local rules for each cell [Wol02]. As the LBM computes macroscopic behavior, such as the motion of a
fluid, with equations describing microscopic scales, it operates on a so-called ”mesoscopic” level in between
those two extremes.

Historically, the LBM evolved from methods for the simulation of gases that computed the motion of each
molecule in the gas purely with integer operations. In [HYP76], there was a first attempt to perform fluid
simulations with this approach. It took ten years to discover that the isotropy of the lattice vectors is crucial for
a correct approximation of the NS equations [FdH+87]. Motivated by this improvement, [MZ88] developed
the first algorithm that was actually called LBM by performing simulations with averaged floating point values
instead of single fluid molecules. The third important contribution to the basic LBM was the simplified collision
operator with a single time relaxation parameter [BGK54, CCM92, QdL92].

60
Real Time Physics

Class Notes

D2Q9
D3Q19

DFs of length 1

DFs of length 0DFs of length 2

Cell boundary

2 Dimensions
9 Velocities

3 Dimensions
19 Velocities

Figure 10.1: The most commonly used LBM models in two and three dimensions.

memory than the 27 velocity model. For two dimensions the D2Q9 model with nine veloc-
ities is the most common one. The D3Q19 model with its lattice velocity vectors e1..19 is
shown in Fig. 10.1 (together with the D2Q9 model). The velocity vectors take the fol-
lowing values: e1 = (0,0,0)T , e2,3 = (±1,0,0)T , e4,5 = (0,±1,0)T , e6,7 = (0,0,±1)T ,
e8..11 = (±1,±1,0)T , e12..15 = (0,±1,±1)T , and e16..19 = (±1,0,±1)T . As all formulas
for the LBM usually only depend on the so-called particle distribution functions (DFs),
all of these two-dimensional and three-dimensional models can be used with the method
presented here. To increase clarity, the following illustrations will all use the D2Q9 model.

For each of the velocities, a floating point number f1..19, representing a blob of fluid
moving with this velocity, needs to be stored. As the LBM originates from statistical
physics, this blob is thought of as a collection of molecules or particles. Thus, in the
D3Q19 model there are particles not moving at all (f1), moving with speed 1 (f2..7) and
moving with speed

√
2 (f8..19). In the following, a subscript of ĩ will denote the value from

the inverse direction of a value with subscript i. Thus, fi and fĩ are opposite DFs with in-
verse velocity vectors eĩ = −ei. During the first part of the algorithm (the stream step), all
DFs are advected with their respective velocities. This propagation results in a movement
of the floating point values to the neighboring cells, as shown in Fig. 10.2. Formulated in
terms of DFs the stream step can be written as

f ∗i (x, t +∆t) = fi(x+∆t eĩ, t). (10.3)

Here, ∆x denotes the size of a cell and ∆t the time step size. Both are normalized by the
condition ∆t/∆x = 1, which makes it possible to handle the advection by a simple copying
operation, as described above. These post-streaming DFs f ∗i have to be distinguished from
the standard DFs fi, and are never really stored in the grid. The stream step alone is clearly
not enough to simulate the behavior of incompressible fluids, which is governed by the on-
going collisions of the particles with each other. The second part of the LBM, the collide
step, amounts for this by weighting the DFs of a cell with the so called equilibrium distribu-
tion functions, denoted by f eq

i . These depend solely on the density and velocity of the fluid.
Here, the incompressible model from [HL97] is used, which alleviates compressibility ef-
fects of the standard model by using a modified equilibrium DF and velocity calculation.
The density and velocity can be computed by summation of all the DFs for one cell

ρ = ∑ fi u = ∑ei fi . (10.4)

CHAPTER 10. GRID BASED FLUID SIMULATION 61

Treatment of a
single Fluid Cell

Full Set of
streamed DFs

Compute Velocity and
Density, Coll ide
streamed DFs

Store DFs in
Target Grid, continue

with next Cell

Stream DFs
from adjacent

Fluid Cells

F
F

F

F
F

F

F
F

F

F
F

F

F
F

F

F
F

F

...

Figure 10.2: This figure gives an overview of the stream and collide steps for a fluid cell.

The standard model, in contrast to the one used here, requires a normalization of the velocity
with the fluid density. For a single direction i, the equilibrium DF f eq

i can be computed with

f eq
i = wi

[
ρ +3ei ·u−

3
2

u2 +
9
2
(ei ·u)2

]
, where (10.5)

wi = 1/3 for i = 1,

wi = 1/18 for i = 2..7,

wi = 1/36 for i = 8..19.

The equilibrium DFs represent a stationary state of the fluid. However, this does not mean
that the fluid is not moving. Rather, the values of the DFs would not change, if the whole
fluid was at such an equilibrium state. For very viscous flows, such an equilibrium state
(equivalent to a Stokes flow) can be globally reached. In this case, the DFs will converge to
constant values. The collisions of the molecules in a real fluid are approximated by linearly
relaxing the DFs of a cell towards their equilibrium state. Thus, each fi is weighted with
the corresponding f eq

i using:

fi(x, t +∆t) = (1−ω) f ∗i (x, t +∆t) + ω f eq
i . (10.6)

Here, ω is the parameter that controls the viscosity of the fluid. Often, τ = 1/ω is also used
to denote the lattice viscosity. The parameter ω is in the range of (0..2], where values close
to 0 result in very viscous fluids, while values near 2 result in more turbulent flows. Usually
these are also visually more interesting. However, for values close to 2, the method can

62
Real Time Physics

Class Notes

Reflect DFs
from Obstacle

Directions

Treatment of
Fluid Cell next to

Obstacle

Stream DFs
from adjacent

Fluid Cells

Coll ide
streamed DFs

Store DFs in
Target Grid

Continue with
next Cell

O

O

O

F
F

F

F
F

F

O

O

O

F
F

F

F
F

F

Figure 10.3: This figure gives an overview of the stream and collide steps for a fluid cell
next to an obstacle.

become instable. In Section 10.5, a method to stabilize the computations with a turbulence
model will be explained. This alleviates the instabilities mentioned above. The parameter
ω is given by the kinematic viscosity of a fluid. The values computed with Eq. (10.6) are
stored as DFs for time t + ∆t. As each cell needs the DFs of the adjacent cells from the
previous time step, two arrays for the DFs of the current and the last time step are usually
used.

The easiest way to implement the no-slip boundary conditions is the link bounce back
rule that results in a placement of the boundary halfway between fluid and obstacle cells.
If the neighboring cell at (x + ∆t ei) is an obstacle cell during streaming, the DF from the
inverse direction of the current cell is used. Thus, Eq. (10.3) changes to

f ∗i (x, t +∆t) = fĩ(x, t). (10.7)

Fig. 10.3 illustrates those basic steps for a cell next to an obstacle cell.

10.4 Implementation

A 2D implementation of the algorithm described so far might consist of a flag field g to
distinguish fluid (g = FLUID) and obstacle cells (g = OBS), and two arrays of single-
precision floating point variables, f and f ′, with 9 values for each cell in the grid. For a grid
with nx and ny cells along the x- and y-direction, respectively, a typical initialization step

CHAPTER 10. GRID BASED FLUID SIMULATION 63

might be to set the boundaries of the domain to be obstacles, and initialize a resting fluid
volume:

Init-lbm
(1) for j = 0 to ny do
(2) for i = 0 to nx do
(3) if(i == 0||i == nx−1|| j == 0|| j == ny−1) do
(4) g[i, j] = OBS
(5) else
(6) g[i, j] = FLUID
(5) endif
(7) for l = 0 to 9 do
(7) f [i, j, l] = f ′[i, j, l] = wl;
(7) endfor
(8) endfor
(9) endfor

The code above and below requires some globals arrays: the weights of the equilibrium
DFs w, and the lattice vectors. For the D2Q9 model, these are

Lbm D2Q9 Globals
(1) wl[9] = {1/3, 1/18,1/18,1/18,1/18, 1/18,1/18,1/18,1/18}
(2) ex[9] = {0, 1,−1,0,0, 1,−1,1,−1}
(3) ey[9] = {0, 0,0,1,−1, 1,1,−1,−1}

During a loop over all cells in the current grid, each cell collects the neighboring DFs
according to Eq. (10.3) or Eq. (10.7), for adjacent fluid and obstacle cells, respectively.

Stream
(1) for j = 0 to ny do
(2) for i = 0 to nx do
(3) for l = 0 to 8 do
(4) linv = invert(l)
(5) if g[i+ ex[linv], j + ey[linv]] == OBS do
(6) f ′[i, j, l] = f [i, j, linv]
(7) else
(8) f ′[i, j, l] = f [i+ ex[linv], j + ey[linv], l]
(9) endif
(10) endfor
(11) endfor
(12) endfor

Here, ex and ey denote the x- and y-components of a lattice vector ei, while invert(l) is
a function to return the index of the lattice vector opposite to ei. The pseudo code above

64
Real Time Physics

Class Notes

performs the normal streaming operation for all fluid neighbors, and uses a bounce-back
boundary conditions for obstacle cells.

The next step is to compute the collisions of the streamed DFs. For this, the density and
velocity are computed and used to calculate the equilibrium DFs. These are weighted with
the streamed DFs according to the viscosity parameter ω .

Collide
(1) for j = 0 to ny do
(2) for i = 0 to nx do
(3) if g[i, j] == OBS do continue; endif
(4) (ρ,ux,uy) = getDensityAndVelocity(i, j,k)
(5) for l = 0 to 8 do
(6) a = ex[l]ux + ey[l]uy

(7) f eq = w(l)(ρ + 3
2(u2

x +u2
y)+3a+ 9

2 a2)
(8) f ′[i, j, l] = (1−ω) f ′[i, j, l]+ω f eq

(9) endfor
(10) endfor
(11) endfor

Here, getDensityAndVelocity(i, j) is a function to compute the density and velocity for
a single cell. As described above, these values can be computed by summation over all the
DFs of a cell:

getDensityVelocity(i, j)
(1) ρ = ux = uy = uz = 0
(2) for l = 0 to 8 do
(3) ρ+ = f ′[i, j, l]
(4) ux+ = ex[l] · f ′[i, j, l]
(5) uy+ = ey[l] · f ′[i, j, l]
(6) endfor
(9) return(ρ,ux,uy)

Once the Stream and Collide steps are completed, the f ′ grid contains the updated state
of the fluid for the next time step. Typically, the two grids are now swapped, and subsequent
time steps alternate in streaming and colliding the DFs from one grid array to the other.
Performing these two very simple steps already computes a solution of the Navier-Stokes
equations. Note that using Eq. (10.7) the DFs for obstacle cells are never touched. For a 3D
implementation, it is only necessary to loop over a third component, and include all 19 DFs
in the inner loops over l (instead of only 9). The operations themselves are the same in 2D
and 3D.

In contrast to a standard finite-difference NS solver, the implementation is much sim-
pler, but also requires more memory. A typical NS solver as described in Section 10.1
usually requires at least 7 floating point values for each grid point (pressure, three veloc-
ity components, plus three temporary variables), but for some cases it might need higher

CHAPTER 10. GRID BASED FLUID SIMULATION 65

resolutions to resolve obstacles with the same accuracy. Using a more sophisticated LB im-
plementation with grid compression [PKW+03], the memory requirements can be reduced
to almost half of the usual requirements. Furthermore, using an adaptive time step size is
common practice for a NS solver, while the size of the time step in the LBM is, by default,
fixed to 1 (however, [TPR+06] explains how to achieve the effect of a changing time step
for a LBM solver). As the maximum lattice velocity may not exceed 1/3, in order for the
LBM to remain stable, it might still need several time steps to advance to the same time a
NS solver would reach in a single step. However, each of these time steps usually requires
a significantly smaller amount of work, as the LBM can be computed very efficiently on
modern CPUs. Moreover, it does not require additional global computations such as the
pressure correction step.

10.5 Stability

In order to simulate turbulent flows with the LBM, the basic algorithm needs to be ex-
tended, as its stability is limited once the relaxation parameter τ approaches 1/2 (which is
equivalent to ω being close to 2). Here, the Smagorinsky sub-grid model, as used in, e.g.,
[WZF+03, LWK03], will be applied. Its primary use is to stabilize the simulation, instead
of relying on its ability to accurately model subgrid scale vortices in the simulation. The
model requires slightly more computations per cell than the standard LBM, but significantly
increases stability which makes it a very useful addition. Note that in recent years, a variety
of collision operators with increased accuracy and stability have been developed (e.g., multi
relaxation time models and cascaded lattice boltzmann), but we have have found that the
Smagorinsky model is easy to use and gives visually plausible results.

The sub-grid turbulence model applies the calculation of the local stress tensor as de-
scribed in [Sma63] to the LBM. The computation of this tensor is relatively easy for the
LBM, as each cell already contains information about the derivatives of the hydrodynamic
variables in each DF. The magnitude of the stress tensor is then used in each cell to mod-
ify the relaxation time according to the so called eddy viscosity. For the calculation of the
modified relaxation time, the Smagorinsky constant C is used. For the simulations in the
following, C will be set to 0.03. Values in this range are commonly used for LB simulations,
and were shown to yield good modeling of the sub-grid vortices [YGL05]. The turbulence
model is integrated into the basic algorithm that was described in Section 10.3 by adding
the calculation of the modified relaxation time after the streaming step, and using this value
in the normal collision step.

The modified relaxation time τs is calculated by performing the steps that are described
in the following. First, the non-equilibrium stress tensor Πα,β is calculated for each cell
with

Πα,β =
19

∑
i=1

eiα eiβ

(
fi− f eq

i

)
, (10.8)

using the notation from [HSCD96]. Thus, α and β each run over the three spatial dimen-
sions, while i is the index of the respective velocity vector and DF for the D3Q19 model.

66
Real Time Physics

Class Notes

The viscosity correction uses an intermediate value S which is computed as

S =
1

6C2

(√
ν2 +18C2

√
Πα,β Πα,β −ν

)
. (10.9)

Now the modified relaxation time is given by

τs = 3(ν +C2S)+
1
2
. (10.10)

From Eq. (10.9) it can be seen that S will always have a positive value – thus the local
viscosity will be increased depending on the size of the stress tensor calculated from the
non-equilibrium parts of the distribution functions of the cell to be relaxed. This effectively
removes instabilities due to small values of τ . We have found that with values of C around
0.03 the LBM simulations are removed of all stability problems, if it is ensured that the
velocities lie in the allowed range (|v|< 1/3).

Chapter 11

Shallow Water Equations
Nils Thuerey, Peter Hess

11.1 Introduction

The shallow water equations (SWE) are a simplified version of the more general Navier-
Stokes (NS) equations, which are commonly used to describe the motion of fluids. The SWE
reduce the problem of a three-dimensional fluid motion to a two-dimensional description
with a height-field representation. From now on, we will use the following notation (it is
also illustrated in Fig. 11.1):

• h denotes the height of the fluid above zero-level.

• g is the height of the ground below the fluid (above zero-level).

• η denotes the height of the fluid above ground, η = h−g.

• v the velocity of the fluid in the horizontal plane.

A basic version of the SWE can be written as

∂η

∂ t
+(∇η)v =−η∇ ·v (11.1)

∂v
∂ t

+(∇v)v = an∇h , (11.2)

where an denotes a vertical acceleration of the fluid, e.g., due to gravity. This formulation
can be derived from the NS equations by, most importantly, assuming a hydrostatic pressure
along the direction of gravity. Interested readers can find a detailed derivation of these
euqations in Section A.

In the following sections we will first explain how to solve these equations with a basic
solver, and then extend this solver with more advanced techniques to handle open bound-
aries, or free surfaces.

67

68
Real Time Physics

Class Notes

v1

v2

h

0
g

h

h

g

h

Figure 11.1: A fluid volume is represented as a heightfield elevation in normal direction n.
The fluid velocity v has two components in horizontal directions.

11.2 A basic Solver

A basic solver of the SWE has to compute the change of the height and velocity values of
the water surface over time. According to Eq. (11.2) and Eq. (11.1) the equations for the
water height η and the velocity v = (v1,v2) can be written as:

∂η/∂ t +(∇η)v =−η∇ ·v
∂v1/∂ t +(∇v1)v = an∇h

∂v2/∂ t +(∇v2)v = an∇h . (11.3)

In this form, the two distinct parts of the equations can be identified: the left side accounts
for the advection within the velocity field v, while the right side computes an additional
acceleration term. Here, we will use an explicit time integration scheme, as this makes the
solution of the SWE signficantly more simple. Alternatively, implicit schemes, as described
in [LvdP02] could be used. These, however, require a system of linear equations to be solved
for the update, and, with simpler methods such as implicit Euler, introduce a significant
amount of damping.

To compute a solution for these equations, we first discretize the domain with n1 cells in
x-direction, and n2 cells in y-direction. For simplicity, we assume in the following that the
cells have a square form with side length ∆x. The gravity force an is assumed to act along
the z-axis, e.g. an = 10, and the size of a single time step is given by ∆t. The overall height
of the water, and the strength of the gravity will later on determine the speed of the waves
travelling on the surface. To represent the three unknowns with this grid we use a staggered
grid. This means that the pressure is located in the center of a cell, while the velocity
components are located at the center of each edge, as shown in Fig. 11.1. The staggered
grid is commonly used for fluid solvers, and prevents instabilities that would result from
a discretization on a co-located grid. An update step of the shallow water solver consisits
of the following parts: first all three fields are advected with the current velocity field.
Afterwards, the acceleration terms are computed for the height and velocity fields. The
following pseudo-code illustrates a single step of the simulation loop of a simple shallow
water solver:

CHAPTER 11. SHALLOW WATER EQUATIONS 69

Shallow-water-step(η ,v,g)
(1) η = Advect(η ,v)
(2) v1 = Advect(v1,v)
(3) v2 = Advect(v2,v)
(4) Update-height(η ,v)
(5) h = η ′+g
(6) Update-velocities(h,v1,v2)

Note that the three calls of the Advect(...) function return a value that is assigned back to
the original input grid (e.g., in line 1 η is a parameter of the call, and used in the assignment).
This should indicate that the advection requires a temporary array, to which the advected
values are written, and which is copied back to the original grid after finishing the advection
step.

To compute the advection, we can use the semi-Lagrangian method [Sta99] to compute
a solution without having to worry about stability. This algorithm computes the advection
on a grid by essentially performing a backward trace of an imaginary particle at each grid
location. Given a scalar field s to be advected, we have to compute a new value for a grid
cell at position x. This is done by tracing a particle at this position backward in time, where
it had the position xt−1 = x−∆tv(x). We now update the value of s with the value at xt−1,
so the new value is given by s(x)′ = s(xt−1). Note that although x is either the center or
edge of a cell in our case, x′ can be located anywhere in the grid, and thus usually requires
an interpolation to compute the value of s there. This is typically done with a bi-linear
interpolation, to ensure stability. It guarantees that the interpolated value is bounded by
its source values from the grid, while any form of higher order interpolation could result
in larger or smaller values, and thus cause stability problems. The advection step can be
formulated as

Advect(s,v)
(1) for j = 1 to n2−1
(2) for i = 1 to n1−1
(3) x = (i ·∆x, j ·∆x)
(4) x′ = x−∆t · v(x)
(5) s′(i, j) = interpolate(s,x′)
(6) endfor
(7) endfor
(8) return(s′)

Note that, due to the staggered grid, the lookup of v(x) above already might require an
averaging of two neighboring velocity components to compute the velocity at the desired
position. This is also, why the three advection steps cannot directly performed together -
each of them requires slightly different velocity interpolations, and leads to different offsets
in the grid for interpolation.

The divergence of the velocity field for the fluid height update can be easily computed
with finite differences on the staggered grid. So, according to Eq. (11.3), the height update
is given by

70
Real Time Physics

Class Notes

Update-height(η ,v)
(1) for j = 1 to n2−1
(2) for i = 1 to n1−1

(3) η(i, j)−= η(i, j) ·
(

(v1(i+1, j)−v1(i, j))
∆x + (v2(i, j+1)−v2(i, j))

∆x

)
∆t

(5) endfor
(6) endfor
(7) return(η ′)

In contrast to the advection steps, adding the accelerations can be directly done on the
input grids. Similarly, the acceleration term for the velocity update is given by the gradient
of the overall fluid height. Note that in this case, the total height above the zero-level is
used instead of the fluid height above the ground level. This is necessary, to, e.g., induce an
acceleration of the fluid on an inclined plane, even when the fluid height itself is constant
(all derivatives of η would be zero in this case). The parameter a for the velocity update
below is the gravity force.

Update-velocities(h,v1,v2,a)
(1) for j = 1 to n2−1
(2) for i = 2 to n1−1
(3) v1(i, j)+ = a(h(i−1, j)−h(i, j)

∆x)∆t
(5) endfor
(6) endfor
(7) for j = 2 to n2−1
(8) for i = 1 to n1−1
(9) v2(i, j)+ = a(h(i, j−1)−h(i, j)

∆x)∆t
(10) endfor
(11) endfor

This concludes a single step of a basic shallow water solver. Note that the steps so far
do not update the values at the boundary of the simulation domain, as we cannot compute
any derivatives there. Instead, special boundary conditions are required at the border, and
can be used to achieve a variety of effects. These will be the topic of the next section.

11.3 Boundary Conditions

In the following, we will describe different types of boundary conditions: reflecting and
absorsorbing boundaries, as well as a form of free surface boundary conditions. The former
can be used to model a wall that reflects incoming waves. The second type can be used
to give the effect of an open water surface, as waves will simply leave the computational
domain. Free surface boundary conditions can be used once the fluid should, e.g., flow
through a landscape. Although the boundary conditions will be described to handle the
outermost region of the computational domain, they can likewise be used to, e.g., create a

CHAPTER 11. SHALLOW WATER EQUATIONS 71

Figure 11.2: Example of a wave spreading in a basic shallow water simulation.

wall in the middle of the domain. We will not consider periodic boundary conditions here.
They are commonly used in engineering applications, but give the visually unnatural effect
that a wave leaving the domain at the right side re-enters it at the left. The results shown in
this section where created by Peter Hess [Hes07].

Reflecting Boundaries

In the following, we will, without loss of generality, consider the boundary conditions for
cells at the left boundary. Reflecting boundary conditions are achieved by setting the veloc-
ities at the boundary to zero (after all, there should be no flux through the wall). In addition,
we mirror the height of the fluid in the outermost layer. We thus set:

h(0, j)′ = h(1, j)
v1(1, j)′ = 0

v2(0, j)′ = 0 . (11.4)

Note that we do not modify the y-component v2 of the velocity field. The fluid is thus
allowed to move tangentially to a wall. Theoretically, we could also enforce different behav-
iors for the tangential velocities, but in practice this does not make a noticeable difference.
Also note, that we only set v1(1, j), as v1(0, j) is usually never accessed during an compu-
tation step.

72
Real Time Physics

Class Notes

Absorbing Boundaries

Surprisingly, it is more difficult to achieve absorbing boundaries than reflecting ones. The
problem of boundaries simulating an infinite domain is already known for a long time (see,
e.g., [Dur01] for details). A commonly used method to achieve this, is the perfectly matched
layer introduced by [Ber94], requires an additional layer of computations around the actual
domain.

This is why we chose to use the Higdon boundary conditions [Hig94] which are less
accurate but can be more efficiently computed than PML. Below is the pth order Higdon
boundary condition, where the velocities c j are chosen to span the range of incoming wave
velocities. (

p

∏
j=1

(
∂

∂ t
+ c j

∂

∂x

))
h = 0 (11.5)

This boundary condition can be problematic for higher order approximations, but as the
wave propagation speed in shallow water is known to be c =

√
gη , this allows us to use to

use the 1st order boundary condition(
∂

∂ t
+ c

∂

∂x

)
h = 0 . (11.6)

This boundary condition actually requires temporal derivatives, so we assume the cur-
rent heightfield is given by ht , while the heights of the previous step are stored in ht−1.
Hence, we can set the boundary values to:

h(0, j)′ =
∆x h(0, j)t−1 +∆t c(1, j)th(1, j)t

∆x+∆t c(1, j)t

v1(1, j)′ = v1(1, j)t−1−a
h(1, j)t −h(0, j)t

∆x
∆t

v2(1, j)′ = 0 (11.7)

Note that the update of v1 is essentially the same acceleration term on the left hand side
of Eq. (A.16). To further suppress any residual reflections at the boundary, we can apply a
slight damping of the height field in a layer around the boundary.

Fig. 11.3 shows the effect of these boundary conditions compared to reflecting ones.
For boundaries where fluid should flow into or out of the domain, we can reuse the two

types above. Inflow boundary conditions can be achieved by specifiying reflecting ones,
with an additional fixed normal velocity. For outflow boundary conditions, absorbing ones
with free normal velocities are more suitable.

Free Surfaces

Often, shallow water simulations assume a completely fluid domain, since this makes solv-
ing the SWE quite straightforward. Once applications like a river, or fluid filling an arbitrary
terrain are needed, this is not sufficient anymore. Such applications require a distinction be-
tween areas filled with fluid, and empty or dry areas. An example can be seen in Fig. 11.4.
In the following we will consider this as a problem similar to free surface handling for full
fluid simulations. Shallow water simulations naturally have an interface, and thus a free

CHAPTER 11. SHALLOW WATER EQUATIONS 73

Figure 11.3: A comparison between reflecting boundary conditions (upper row of pictures),
and absorbing ones (lower row).

surface, in the simulation plane between fluid below and a second gas phase above the fluid.
In addition, we will now prescribe boundary conditions with such a free surface within the
simulation plane itself. From the mathematical point of view, a distinction between fluid
and dry would not be necessary since the SWE still work if η is zero. Distinguishing fluid
and dry cells, however, brings some advantages. Foremost, computational time can be saved
if large parts of the domain are dry. Therefore, we introduce cell flags f (i, j), that deter-
mine the type of each cell, and update them once per time step after updating the heights.
This allows us to quickly identify wet and dry cells. Besides the computational advantage,
controlling the transition between wet and dry cells also gives us some control over the
spreading velocity. Without free surface tracking, the fluid boundary would expand exactly
one cell per time step, regardless of cell size and time step length. The height of this ad-
vancing boundary would be very small, but this behavior is usually not desired. In addition,
we will compute a fill value r for each cell, as this allows us to track a smoothly moving
surface line between the fluid and empty cells.

To determine the cell’s flag f we have to compute the minimal and maximal ground
level hmin and hmax as well as the maximal fluid depth ηmax on the cell’s edges.

hmin(i, j) =
h(i, j)+min h(p)

2
p ∈N (i, j) (11.8)

hmax(i, j) =
h(i, j)+max h(p)

2
+ εH p ∈N (i, j) (11.9)

ηmax(i, j) =
η(i, j)+max η(p)

2
p ∈N (i, j) (11.10)

where N (i, j) is the set of the four direct neighbors of cell (i, j). Note that we add
a small value εh to hmax to prevent hmin to be equal to hmax in flat areas. With these three
values we can now determine f as well as the fill ratio r which indicates the cell’s fill level in
dependence of the local ground topology hmin(i, j) and hmax(i, j). r can be used to compute

74
Real Time Physics

Class Notes

Figure 11.4: A shallow water simulation with free surface boundary conditions fills a ter-
rain.

an isoline which defines the border of the rendered fluid surface for rendering the water
surface. The following pseudo code shows how f and r are calculated:

Compute-flags(i, j)
(1) ifh(i, j)≤ hmin(i, j)andηmax(i, j) < εηmax

(2) f (i, j) = DRY
(3) r(i, j) = 0
(4) else ifh(i, j) > hmax

(5) f (i, j) = FLUID
(6) r(i, j) = 1
(7) else
(8) f (i, j) = FLUID

(9) r(i, j) =
(

h(i, j)−hmin(i, j)
)
/
(

hmax(i, j)−hmin(i, j)
)

(10) endif

A cell is marked as dry if its surface height is not higher than the lowest ground value
in the cell and if there is no neighbor cell from which fluid could flow into this cell. The fill

CHAPTER 11. SHALLOW WATER EQUATIONS 75

Figure 11.5: A wave flows through an S-shaped river bed, and pushes a large number of
rigid bodies along with the flow.

ratio is then set to zero. εη can be seen as a threshold which allows inflow from a neighbor
cell only if this neighbor has a large enough amount of fluid. This effectively limits the
spread of thin layers of fluid. So this could be seen as a simple way of simulating surface
tension. A cell is completely filled if its surface height is higher than the ground at any
position in the cell. The fill ratio is then set to one. The cell is also marked as fluid if the
surface height is only in parts higher than the ground level. In this case however the fill ratio
is the ratio between minimal ground level, fluid surface height and maximal ground level.

Note, that with this definition cells may have negative depth values η even if they are
marked as fluid. There are cases were the cell center itself is dry, so the value of η is
negative at this point, while the whole cell still contains fluid at the edges of a cell.

Part I

Appendix

76

Appendix A

Derivation of the Shallow Water
Equations
Nils Thuerey, Roland Angst

In this chapter we go through a detailed derivation of a more general form of the shallow
water equations (SWE) from the underlying Navier-Stokes (NS) equations. It is based on
[Ang07].

A.1 Integral Form

The SWE are a specialized and simplified version of the Navier-Stokes equations. The
Navier-Stokes equations describe the dynamics of a fluid much like elasticity theory de-
scribes the dynamics of deformable solids. The Navier-Stokes equations relate the dy-
namics of the density field, the temperature field and the velocity field of a fluid to each
other. The full Navier-Stokes equations in three dimensions are a system of partial differ-
ential equations with five equations and unknowns (density, velocity and temperature). The
Navier-Stokes equations as well as the SWE are derived from three balance equations which
prescribe three conservation laws, namely the conservation of mass, momentum and energy.
In addition, we will make use of the material specific constitutive relations for the deriva-
tion. A common simplification is to assume that the fluid flow is incompressible which
means that the fluid density is spatially constant. Likewise, we assume that the viscosity
coefficient, and the thermal conductivity are uniform.

This assumption has important implications:

• The density is no longer an unknown of the equation system. Instead, the pressure
becomes an unknown.

• The pressure and the velocity field are decoupled from the energy conservation. This
means that we can solve for the pressure and the velocity ignoring the temperature
field. We thus assume an isotermal fluid.

These first assumptions reduce the Navier-Stokes equations to four equations in four un-
knowns: three velocity components and the pressure.

77

78
Real Time Physics

Class Notes

Balance Equations

The balance equations describe fundamental physical laws and are valid for any system
described with continuum mechanics. Hence, they are the same for the Navier-Stokes equa-
tions and for the SWE. Since we assume that the fluid is incompressible and isothermal,
the conservation of mass and the conservation of momentum are the only balance equations
required for the derivation. The continuity equation or conservation of mass for a domain
Ω with the boundary ∂Ω with density ρ reads like

d
dt

∫∫∫
Ω3

ρdV +
∫∫

∂Ω3
ρv ·ndA = 0 . (A.1)

It means the temporal change of the fluid mass in the domain, which is computed by the
integral of the density over the fluid volume (the first term), is given by the flux along its
boundary (the second term). Similarly, the conservation of momentum looks like

d
dt

∫∫∫
Ω3

ρvdV +
∫∫

∂Ω3
ρvvT ·ndA

∫∫
∂Ω3

σ ·ndA =
∫∫∫

Ω3
fdV (A.2)

where v is the fluid velocity and f captures sources and sinks of the fluid. This last term is
also known as body force and is a force density, in [N/m3], and the actual force acting on
a given volume V is thus given by the volume integral over this force density. σ denotes
the stress tensor which is the sum of the pressure p and the viscous stress tensor T. Note
that viscous forces are caused by spatial velocity differences in the fluid. We will assume
that there are only small velocity variations, so that the viscosity coefficient is small. In
addition we will ignore the viscous stress tensor. This assumption justified by observing that
water-like fluids have a very small viscosity and that the numerical integration introduces a
certain amount of damping, which basically has the same effect as a viscosity larger than
zero. Typically, this numerical viscosity is larger than that of water so that we rely on the
solver to compute a fluid motion with a viscosity as small as possible. Essentially, we solve
for an inviscid fluid.

Projection

The derivation of the SWE now proceeds by making an important assumption: the pressure
is assumed to be hydrostatic, i.e.,

p = ρan∆η (A.3)

where an is the acceleration in vertical direction and ∆η corresponds to the vertical distance
from the bottom of the fluid to its surface. Amongst others, the vertical acceleration takes
care of the gravitational acceleration g = −9.81 m

s2 . This hydrostatic pressure equation can
be derived by assuming that the vertical velocity is much smaller than the horizontal velocity
such that the momentum conservation in vertical direction is dominated by the pressure term
and hence the advection of the vertical velocity vn can safely be ignored. This assumption is
justified by observing that in areas where the fluid is shallow, the vertical velocity is indeed
orders of magnitude smaller than the horizontal velocity components. The implications of
the hydrostatic pressure assumption are:

APPENDIX A. DERIVATION OF THE SHALLOW WATER EQUATIONS 79

• The momentum equation for the vertical component is static, i.e., the vertical velocity
is temporally constant and equal to zero.

• The velocity is basically a two dimensional tangential vector field which is orthogonal
to the vertical (or normal) direction.

• The pressure p acts as the sole vertical variable.

• The fluid surface can be represented by a heightfield.

The assumption of a hydrostatic pressure thus allows us to further reduce the number of
unknowns from four to three - the fluid can now be described by velocities in the horizontal
domain, and a height of the fluid.

The tangential velocity can be thought of as averaged over the fluid depth. The momen-
tum conservation equation therefore reads∫∫∫

Ω3

(
fτ

fn

)
dV =

d
dt

∫∫∫
Ω3

ρ

(
vτ

0

)
dV

+
∫∫

∂Ω3
ρ

(
vτ

0

)(
vτ

0

)T

·ndA+
∫∫

∂Ω3
pI ·ndA (A.4)

where the subscript τ indicates horizontal (or tangential) components and the subscript n
denotes the vertical (or normal) component. The following notation is introduced and will
be used throughout all the chapters of this chapter:

• H: Height of fluid between zero-level and ground.

• h: Height of fluid above zero-level.

• η : Total fluid height, i.e. η = H +h.

To achieve a heightfield representation of the fluid we have to get rid of the vertical di-
mension in these equations by a projection of the integrals to the two dimensional horizontal
domain. Assume the equations are computed over a fluid column with a square base area
Ω2

τ . Consider first the surface integral in the continuity equation∫∫
∂Ω3

ρv ·ndA =
∫∫

Ω2
τ

ρv ·ndA+
∫∫

Ω2
n

ρv ·ndA

where the surface integral was split up into two parts over the surfaces Ω2
n vertical to the

horizontal projection plane Ω2
τ and the remaining bottom and top surface. There is no mass

flux through the bottom because the bottom surface is impermeable and thus this surface
integral vanishes. The slope of the fluid surface is assumed to be small. This implies that
v ·n is small, too and hence, the integral over the top of the fluid column is negligible. The
mass flux through the vertical sides Ω2

n is reduced to a line integral by projecting the fluid
depth onto the boundaries ∂Ω2

τ of the horizontal projection surface∫∫
Ω2

n

ρv ·ndA =
∫

∂Ω2
τ

∫ h

−H
ρv ·ndηds =

∫
∂Ω2

τ

ρ(h+H)v ·nds =
∫

∂Ω2
τ

ρηv ·nds. (A.5)

80
Real Time Physics

Class Notes

Note that the normals of the vertical surfaces Ω2
n of the fluid column are equal to the normals

of the boundary curve of the horizontal projection surface. The projection of the momentum
advection term is analog to the projection of the mass flux, i.e., the integrals over the non-
vertical areas vanish due to the same reasons.

Consider now the pressure force acting on the fluid column∫∫
∂Ω3

pI ·ndA =
∫∫

Ω2
τ

pI ·ndA+
∫∫

Ω2
n

pI ·ndA

where the surface integral was again split up into a horizontal and a vertical component.
The surface integral over the top of the fluid surface vanishes because the pressure at this
interface is negligible compared to the pressure inside the fluid. The surface integral over
the bottom leads to a source term of the momentum, provided the bottom is non-flat. This
pressure force makes the fluid flow downwards. This force is computed by integrating the
hydrostatic pressure p = ρg∆η over the bottom area∫∫

Ω2
τ

pI ·ndA =
∫∫

Ω2
τ

ρan(−η)ndA

=
∫∫

Ω2
τ

ρan(−H−h)(−∇H)dA =
∫∫

Ω2
τ

ρan(H +h)∇HdA. (A.6)

Note that the normal n in this equation corresponds to the normal given by the negative
gradient of the bottom heightfield −∇H rather than the normal of the horizontal projection
plane. Furthermore, the normalization of the gradient and the cosine for the area foreshort-
ening cancel each other out.

The projection of the pressure force due to the vertical sides of the fluid column trans-
forms the surface integral over these sides again into a boundary integral over the curve
∂Ω2

τ , which bounds the horizontal area. Thus, by integrating over the fluid depth, the fluxes
through the vertical sides get concentrated at the boundary curve ∂Ω2

τ∫∫
Ω2

n

pI ·ndA =
∫

∂Ω2
τ

∫ h

−H
ρan(η−h)ndηds

=−
∫

∂Ω2
τ

1
2

ρan(−H−h)2nds =−
∫

∂Ω2
τ

1
2

ρanη
2nds. (A.7)

Integrating the vertical component in the volume integrals of Eq. (A.1) and Eq. (A.4)
and inserting Eq. (A.5), Eq. (A.6), and Eq. (A.7) the SWE can be restated in the integral
form

d
dt

∫∫
Ω2

τ

ρηdA+
∫

∂Ω2
τ

ρηv ·nds = 0 (A.8)

d
dt

∫∫
Ω2

τ

ρηvdA+
∫

∂Ω2
τ

ρηvvT ·nds−
∫

∂Ω2
τ

1
2

ρanη
2nds

=−
∫∫

Ω2
τ

ρanη∇HdA+
∫∫

Ω2
τ

ηfτdA. (A.9)

From now on, the subscript τ will be omitted in the equations. In the literature, these
equations are often given in the so called flux form

d
dt

∫∫
Ω2

qdA+
∫

∂Ω2
F(q) ·nds =

∫∫
Ω2

ψdA (A.10)

APPENDIX A. DERIVATION OF THE SHALLOW WATER EQUATIONS 81

where the equations were divided by the constant density and

q =
(
η ηu ηv

)T

F(q) =
[
f(q) g(q)

]
=

 ηu ηv
ηu2− 1

2 anη2 ηuv
ηuv ηv2− 1

2 anη2


ψ =

(
0

−anη∇H + η

ρ
fτ

)
.

The two components of the velocity are denoted here as v = (u,v)T . This notation clearly
shows the non-linearity and the conservative nature of the equations due to the flux across
the boundary.

A.2 Differential Form

We now turn to the derivation of the differential form of the SWE, although the integral form
admits more general solutions than the differential form. Solutions to the integral form may
exhibit discontinuities (which must still satisfy certain conditions) like for example shocks.
Such solutions are also known as weak solutions. The differential form on the other hand
is written as a partial differential equation (PDE) which only admits continuous solutions
because the derivation requires a continuity assumption. Solutions of the differential form
are known as strong (also called pointwise) solutions. But note that the true solution of the
SWE with certain boundary conditions might indeed be discontinuous and in such cases, a
solution method derived from the differential form fails to converge to the correct solution.
However, in computer graphics, accuracy is not the most important factor and thus, a strong
solution which is similar to the true weak solution might be adequate enough.

As mentioned before, we will assume in this derivation that the solution to the SWE is
continuous and differentiable. The divergence theorem can then be applied to the boundary
integral of the integral form A.8 and A.9 and the time derivative can be moved inside the
integral. We end up with∫∫

Ω2
qtdA+

∫∫
Ω2

∇ ·F(q)dA =
∫∫

Ω2
ψdA.

This equation must be valid for any two dimensional domain Ω2 and therefore the following
PDE must hold

qt +∇ ·F(q) = qt +
∂ f(q)

∂q
qx +

∂g(q)
∂q

qy = ψ . (A.11)

The chain-rule was used to expand the divergence into a product involving the Jacobian of
the flux functions f and g. Note that such a PDE is called hyperbolic if any linear combina-
tion of the two Jacobians ∂ f

∂q and ∂g
∂q has real eigenvalues and can be diagonalized. This is

indeed the case for the SWE.
Written out in detail, Eq. (A.11) looks like

ηt =−∇ · (ηv) (A.12)
∂ηv
∂dt

+∇ · (ηvvT − I
1
2

anη
2) =−anη∇H +

η

ρ
fτ . (A.13)

82
Real Time Physics

Class Notes

This latter equation can be simplified even further. By pushing the differential operator
inside the bracketed terms we get

ηvt +vηt +v∇ · (ηv)+ηv ·∇u−anη∇η− 1
2

η
2
∇an =−anη∇H +

η

ρ
fτ .

The second and third term on the left hand side correspond to the continuity equation times
the velocity and thus is equal to zero. Dividing by η and observing that H−η =−h finally
gives

vt +v ·∇v−an∇h− 1
2

η∇an =
1
ρ

fτ (A.14)

The previous equation clearly highlights the advectional part of the momentum conserva-
tion. The differential equation derived from the continuity equation can also be formulated
using a material derivative by observing that ∇ · (ηv) = v ·∇η +η∇ ·v. The SWE then take
the following form

Dη

Dt
=−η∇ ·v (A.15)

Dv
Dt

= an∇h+
1
2

η∇an +
1
ρ

fτ . (A.16)

Note that when the balance equations were projected from three dimension to two dimen-
sions, the vertical force component has been dropped. This term can now be reinserted as
a vertical acceleration component, for example in addition to a constant acceleration due to
gravity g =−9.81 m

s2 :

an = g+
fn

ρ

Thanks to these external force terms fτ and fn, the SWE can more easily interact with other
objects. Note that the SWE are usually derived without these terms.

Bibliography

[AN05] Alexis Angelidis and Fabrice Neyret. Simulation of smoke based on vor-
tex filament primitives. SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 87–96,
2005.

[Ang07] Roland Angst. Control Algorithms for Interactively Animated Fluid Char-
acters. Master Thesis, Computer Graphics Laboratory, ETH Zurich, 2007.

[ANSN06] Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek Nowrouzezahrai.
A controllable, fast and stable basis for vortex based smoke simulation. SCA
’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 25–32, 2006.

[BBB07] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational
framework for accurate solid-fluid coupling. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers, page 100, New York, NY, USA, 2007. ACM Press.

[Ber94] Jean-Pierre Berenger. A perfectly matched layer for the absorption of elec-
tromagnetic waves. J. Comput. Phys., 114(2):185–200, 1994.

[BGK54] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes
in gases. Phys. Rev., 94:511–525, 1954.

[BT07] M. Becker and M. Teschner. Weakly Compressible SPH for Free Surface
Flows. ACM SIGGRAPH / Eurographics Symposium on Computer Anima-
tion, 2007.

[CCM92] Hudong Chen, Shiyi Chen, and William H. Matthaeus. Recovery of the
Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev.
A, 45(8):R5339–R5342, 1992.

[CdVLHM97] Jim X Chen, Niels da Vitoria Lobo, Charles E. Hughes, and J. Michael
Moshell. Real-time fluid simulation in a dynamic virtual environment. IEEE
Comput. Graph. Appl., 1997.

[CFL+07] Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F.
O’Brien, and Jonathan R. Shewchuk. Liquid simulation on lattice-based
tetrahedral meshes. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 219–228,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

83

84
Real Time Physics

Class Notes

[CLT07] Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real-time simulation and
rendering of 3d fluids. In GPU Gems 3. Addison-Wesley Professional, 2007.

[CMT04] Mark Carlson, Peter John Mucha, and Greg Turk. Rigid fluid: Animating
the interplay between rigid bodies and fluid. ACM Trans. Graph., 23(3),
2004.

[Dur01] D.R. Durran. Open boundary conditions: Fact and fiction. In IUTAM Sym-
posium on Advances in Mathematical Modelling of Atmosphere and Ocean
Dynamics, pages 1–18. Kluwer Academic Publishers, 2001.

[EMF02] D. Enright, S. Marschner, and R. Fedkiw. Animation and Rendering of
Complex Water Surfaces. ACM Trans. Graph., 21(3):736–744, 2002.

[FdH+87] Uriel Frisch, Dominique d’Humières, Brosl Hasslacher, Pierre Lallemand,
Yves Pomeau, and Jean-Pierre Rivert. Lattice Gas Hydrodynamics in Two
and Three Dimensions. Complex Systems, 1:649–707, 1987.

[FF01] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proc. of
ACM SIGGRPAH, pages 23–30, 2001.

[FM96] N. Foster and D. Metaxas. Realistic Animation of Liquids. Graphical Mod-
els and Image Processing, 58, 1996.

[FOA03] Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Animating sus-
pended particle explosions. In Proc. of ACM SIGGRAPH, pages 708–715,
Aug 2003.

[FOK05] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Animating
gases with hybrid meshes. ACM Trans. Graph., 24(3):904–909, 2005.

[GHDS03] Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schroder. Discrete
shells. In Proceedings of the ACM SIGGRAPH Symposium on Computer
Animation, 2003.

[GHF+07] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and
Eitan Grinspun. Efficient simulation of inextensible cloth. ACM Trans.
Graph., 26(3):49, 2007.

[GM97] S. F. Gibson and B. Mitrich. A survey of deformable models in computer
graphics. Technical Report TR-97-19, MERL, 1997.

[Hah88] James K. Hahn. Realistic animation of rigid bodies. In SIGGRAPH ’88:
Proceedings of the 15th annual conference on Computer graphics and in-
teractive techniques, pages 299–308, New York, NY, USA, 1988. ACM.

[Hes07] Peter Hess. Extended Boundary Conditions for Shallow Water Simulations.
Master Thesis, Computer Graphics Laboratory, ETH Zurich, 2007.

[Hig94] Robert L. Higdon. Radiation boundary conditions for dispersive waves.
SIAM J. Numer. Anal., 31(1):64–100, 1994.

BIBLIOGRAPHY 85

[HL97] X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible
Navier-Stokes equations. J. Stat. Phys., 88:927–944, 1997.

[HNC02] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. Interactive Ani-
mation of Ocean Waves. Proc. of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer animation, July 2002.

[HSCD96] Shuling Hou, James D. Sterling, Shiyi Chen, and Gary Doolen. A Lattice
Boltzmann Subgrid Model for High Reynolds Number Flow. Fields Insti-
tute Communications, 6:151–166, 1996.

[HTK+04] B. Heidelberger, M. Teschner, R. Keiser, M. Mueller, and M. Gross. Consis-
tent penetration depth estimation for deformable collision response. pages
339–346, 2004.

[HYP76] J. Hardy, O. De Pazzis Y., and Pomeau. Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions. Physical
Review A, 13:1949–1960, 1976.

[Jak01] T. Jakobsen. Advanced character physics the fysix engine.
www.gamasutra.com, 2001.

[JP99] Doug L. James and Dinesh K. Pai. Artdefo, accurate real time deformable
objects. In Computer Graphics Proceedings, Annual Conference Series,
pages 65–72. ACM SIGGRAPH 99, August 1999.

[KC04] Pijush Kundu and Ira Cohen. Fluid Mechanics. Elsevier Academic Press,
2004.

[KFCO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F.
O’Brien. Fluid animation with dynamic meshes. ACM Trans. Graph.,
25(3):820–825, 2006.

[KM90] M. Kass and G. Miller. Rapid, Stable Fluid Dynamics for Computer Graph-
ics. ACM Trans. Graph., 24(4):49–55, 1990.

[Lov03] Jörn Loviscach. Complex Water Effects at Interactive Frame Rates. Journal
of WSCG, 11:298–305, 2003.

[LvdP02] Anita T. Layton and Michiel van de Panne. A numerically efficient and sta-
ble algorithm for animating water waves. The Visual Computer, 18(1):41–
53, 2002.

[LWK03] Wei Li, Xiaoming Wei, and Arie E. Kaufman. Implementing lattice Boltz-
mann computation on graphics hardware. The Visual Computer, 19(7-
8):444–456, 2003.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-based
fluid simulation for interactive applications. Proc. of the 2003 ACM Sig-
graph/Eurographics Symposium on Computer Animation, 2003.

86
Real Time Physics

Class Notes

[MDH07] Xing Mei, Philippe Decaudin, and Baogang Hu. Fast hydraulic erosion
simulation and visualization on gpu. In Pacific Graphics, 2007.

[MG04] Matthias Müller and Markus Gross. Interactive virtual materials. In GI ’04:
Proceedings of Graphics Interface 2004, pages 239–246, School of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada, 2004.
Canadian Human-Computer Communications Society.

[MHR06] M. Müller, B. Heidelberger M. Hennix, and J. Ratcliff. Position based dy-
namics. Proceedings of Virtual Reality Interactions and Physical Simula-
tions, pages 71–80, 2006.

[Mon92] J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. Phys.,
30:543–574, 1992.

[MSKG05] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross.
Particle-based fluid-fluid interaction. Proc. of the 2005 ACM Sig-
graph/Eurographics Symposium on Computer Animation, 2005.

[MTPS04] Antoine McNamara, Adrien Treuille, Zoran Popovic, and Jos Stam. Fluid
control using the adjoint method. ACM Trans. Graph., 23(3):449–456,
2004.

[MZ88] Guy R. McNamara and Gianluigi Zanetti. Use of the Boltzmann Equation to
Simulate Lattice-Gas Automata. Phys. Rev. Lett., 61(20):2332–2335, 1988.

[NFJ02] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically
based modeling and animation of fire. In SIGGRAPH ’02: Proceedings
of the 29th annual conference on Computer graphics and interactive tech-
niques, pages 721–728, New York, NY, USA, 2002. ACM Press.

[NMK+05] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically
based deformable models in computer graphics. Eurographics 2005 state of
the art report, 2005.

[OH95] J. F. O’Brien and J. K. Hodgins. Dynamic simulation of splashing fluids. In
CA ’95: Proceedings of the Computer Animation, page 198, 1995.

[PKW+03] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde. Optimization
and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes
in 2D and 3D. Technical Report 03–8, Department for System-Simulation,
Germany, 2003.

[QdL92] Y. H. Qian, D. d’Humières, and P. Lallemand. Lattice BGK Models for
Navier-Stokes Equation. Europhys. Lett., 17(6):479–484, 1992.

[RB07] Matthias Mueller-Fischer Robert Bridson. Fluid Simulation, SIGGRAPH
2007 Course, 2007.

BIBLIOGRAPHY 87

[RNGF03] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fed-
kiw. Smoke simulation for large scale phenomena. ACM Trans. Graph.,
22(3):703–707, 2003.

[Sma63] J. Smagorinsky. General circulation experiments with the primitive equa-
tions. Mon. Wea. Rev., 91:99–164, 1963.

[Sta99] Jos Stam. Stable Fluids. Proc. of ACM SIGGRAPH, pages 121–128, 1999.

[Suc01] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.
Oxford University Press, 2001.

[SY05a] Lin Shi and Yizhou Yu. Controllable smoke animation with guiding objects.
ACM Trans. Graph., 24(1), 2005.

[SY05b] Lin Shi and Yizhou Yu. Taming liquids for rapidly changing targets. Proc. of
the 2005 ACM Siggraph/Eurographics Symposium on Computer Animation,
2005.

[Tes04] Jerry Tessendorf. Simulating Ocean Surfaces. SIGGRAPH 2004 Course
Notes 31, 2004.

[THM+03] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross.
Optimized spatial hashing for collision detection of deformable objects.
pages 47–54, 2003.

[TKPR06] Nils Thürey, Richard Keiser, Mark Pauly, and Ulrich Rüde. Detail-
Preserving Fluid Control. Proc. of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2006.

[TKZ+04] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, Laks Raghu-
pathi, A. Fuhrmann, Marie-Paule Cani, François Faure, N. Magnetat-
Thalmann, and W. Strasser. Collision detection for deformable objects.
In Eurographics State-of-the-Art Report (EG-STAR), pages 119–139. Eu-
rographics Association, 2004.

[TPBF87] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable
models. In Computer Graphics Proceedings, Annual Conference Series,
pages 205–214. ACM SIGGRAPH 87, July 1987.

[TPR+06] Nils Thürey, Thomas Pohl, Ulrich Rüde, Markus Oechsner, and Carolin
Körner. Optimization and Stabilization of LBM Free Surface Flow Sim-
ulations using Adaptive Parameterization. Computers and Fluids, 35 [8-
9]:934–939, September-November 2006.

[TR04] Nils Thürey and Ulrich Rüde. Free Surface Lattice-Boltzmann fluid simu-
lations with and without level sets. Proc. of Vision, Modelling, and Visual-
ization VMV, pages 199–208, 2004.

88
Real Time Physics

Class Notes

[TRS06] Nils Thürey, Ulrich Rüde, and Marc Stamminger. Animation of Open Wa-
ter Phenomena with coupled Shallow Water and Free Surface Simulations.
Proc. of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2006.

[TSS+07] Nils Thürey, Filip Sadlo, Simon Schirm, Matthias Müller-Fischer, and
Markus Gross. Real-time simulations of bubbles and foam within a shal-
low water framework. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 191–198,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[WG00] Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltz-
mann Models. Springer, 2000.

[WLMK04] Xiaoming Wei, Wei Li, Klaus M”uller, and Arie E. Kaufman. The Lattice-
Boltzmann Method for Simulating Gaseous Phenomena. IEEE Transactions
on Visualization and Computer Graphics, 10(2):164–176, 2004.

[Wol02] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

[WWXP06] Changbo Wang, Zhangye Wang, Tian Xia, and Qunsheng Peng. Real-time
snowing simulation. The Visual Computer, pages 315–323, May 2006.

[WZF+03] Xiaoming Wei, Ye Zhao, Zhe Fan, Wei Li, Suzanne Yoakum-Stover, and
Arie Kaufman. Natural phenomena: Blowing in the wind. Proc. of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer animation, pages
75–85, July 2003.

[YGL05] H. Yu, S.S. Girimaji, and Li-Shi Luo. Lattice Boltzmann simulations of
decaying homogeneous isotropic turbulence. Phys. Rev. E, 71, 2005.

[YUM86] Larry Yaeger, Craig Upson, and Robert Myers. Combining physical and
visual simulation and creation of the planet jupiter for the film 2010. In
SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, pages 85–93. ACM Press, 1986.

