CS 277 - Experimental Haptics Lecture 11

Haptic Illusions

Haptic Illusions: an Informal Definition

Haptic rendering effects that may

- Contribute to the realism of a VE
- Cut your interface a break taking advantage of limitations in the human perceptual system

CS277 - Experimental Haptics, Stanford University, Spring 2014

CS277 - Experimental Haptics, Stanford University, Spring 2014

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

- Rendering 3D shapes using 2 DOFs
 - i.e. how to project positions and forces on smaller rank vectorials spaces
- Rendering 2D shapes using 1 DOF
 - i.e. how work can be your ally (and your enemy)
- Rendering small bumps to feel large
 - i.e. how our sensitivity to force direction is not that good
- Rendering large virtual environments using small devices
 - i.e. how to take advantage of humans' poor perception of position
- Rendering fast cars without moving much
 - i.e. our vestibular sense is also pretty limited

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

DEMO

- This is an effect that you should be familiar with
- Basic idea:
 - Real device position will ALWAYS be inside of virtual object

- This is an effect that you should be familiar with
- Basic idea:
 - Real device position will ALWAYS be inside of virtual object
 - All God-object like algorithms find a point on the surface
 - Such point can be used to compute forces
 - and as a visual representation of your finger

- This is an effect that you should be familiar with
- Basic idea:
 - Real device position will ALWAYS be inside of virtual object
 - All God-object like algorithms find a point on the surface
 - Such point can be used to compute forces
 - and as a visual representation of your finger
- Hiding "real" position visually aids the illusion of a stiff object

- Why does this work?
 - Visual feedback dominates our absolute position perception

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

DEMO

- Similar to what we just discussed, but a step further
- Basic idea:
 - Deformable objects change shape when applying forces to them
 - The amount of deformation and real position of device do NOT have to match

- Similar to what we just discussed, but a step further
- Basic idea:
 - Deformable objects change shape when applying forces to them
 - The amount of deformation and real position of device do NOT have to match
- You can completely reverse the relationship between force and deformation

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

DEMO

Complicated surface may limit your haptic rendering rates

- Complicated surface may limit your haptic rendering rates
- Decoupling collision detection and haptic rendering can help rendering stiffer objects

- Slow thread computes a new "local model" that approximates object surface but is simple (e.g plane, sphere, ...)
- Fast thread computes fast collision detection and force rendering with local model

Why does this work?

- Max hand bandwidth is about 5Hz in motion => local model computation can be slow
- But we perceive up to KHz => collision detection and force response needs to be as fast as possible

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

Light Shading

CS277 - Experimental Haptics, Stanford University, Spring 2014

Force Shading

Graphic Shading

 eliminate color discontinuities

Haptic Shading

eliminate force discontinuities

Force Shading

Interpolate vertex normals across polygon to get continuous, smooth normals (just like Phong shading in graphics)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Force Shading

DEMO

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

DEMO

Friction is the force resisting the relative motion of solid surfaces, fluid layers, or material elements sliding against each other.

Amontons' 1st Law:

The force of friction is directly proportional to the applied load.

Amontons' 2nd Law:

The force of friction is independent of the apparent area of contact.

Coulomb's Law of Friction:

Kinetic friction is independent of the sliding velocity.

Coulomb friction:

$$F_F \leq \mu \cdot F_N$$

Static friction

static friction cone

$$F_F \leq \mu_S \cdot F_N \qquad \mu_D < \mu_S$$

Kinetic friction

dynamic friction cone

$$F_F \leq \mu_D \cdot F_N$$

- Rendering stiff virtual objects
 - i.e. how to take advantage of humans' poor perception of position
- Rendering stiffer / softer deformable objects
 - i.e. how visual perception dominates haptics
- Rendering very high resolution models
 - i.e. taking advantage of asymmetries of the haptic sense
- Rendering smooth objects: force shading
 - i.e. reality is not a mesh
- Rendering frictional effects
 - i.e. rendering pure shapes doesn't really feel right
- Rendering textures
 - i.e. there is more to objects than just friction

DEMO

CS277 Texperimental (Haptics, Stander University, Spring 2014

2D texture map

polygon + texture