CS 277 - Experimental Haptics Lecture 10

Deformable Models (II)

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

Filling Sphere Approach (2D)

Filling Sphere Approach (3D)

Mass Nodes

Identity	Description	Units	Type
r	Radius	[m]	Float
ρ	Density P	$\left[Kg/m^{3}\right]$	Float
m	Mass	[Kg]	Float
I	Inertia	$\left[Kg \cdot m^2 \right]$	Float $I = \frac{2}{5}mr^2$
Ď	Position of center	[m]	Vector3R $\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$
R	Rotation matrix x y x y	none	Matrix33R $\begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix}$
₹	Instantaneous velocity	[m/s]	Vector3R $\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$
à	Instantaneous acceleration	$[m/s^2]$	Vector3R $\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$
, F	Force applied on center	[N]	Vector3R $\begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}$
\overrightarrow{M}	Moment	$[N \cdot m]$	Vector3R $\begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$
→ ω	Angular velocity	rad/s	Vector3R $\begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$
à	Angular acceleration	[rad/s ²]	Vector3R $\begin{bmatrix} \alpha_x \\ \alpha_y \\ \alpha_z \end{bmatrix}$

Elongation

Flexion and Torsion

Mesh and Skeleton

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

Collision Detection

Collision detection with deformable meshes are difficult to achieve in real time due to the constant change of their geometry (constant update of the collision detection model)

- How can we compute a collision between a segment and deformable mesh?
- How can we compute collisions between deformable meshes?

Collision Segment-Mesh

- 1. Collision detection is first performed between the input segment and the collision spheres composing the skeleton of the model.
- Collision between the segment and the triangles are then searched locally

Collision Mesh-Mesh

Reaction forces are computed between mass nodes

$$F_r = -kx$$

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations