CS 277 - Experimental Haptics Lecture 9

Deformable Models (I)

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

overview

running offline

- CAD design tools
- movie rendering
- building a look-up-table
- games
- model tuning and calibration

running real-time

- interactive games
- flight simulator
- haptic simulator
- real robot controller
- weather forecast

haptics

robot control

- 8
- graphic animation
 - games

- CAD tools
- apps

- industrial simulations
- movie renderings

1ms

0.1s

1s

10s

1m

1h

1day

Discrete Events

In discrete-event simulation, the operation of a system is represented as a chronological sequence of events. Each event occurs at an instant in time and marks a change of state in the system.

- To make objects look, behave and feel realistic when forces are applied.
- To provide visual and force feedback to the user in real time.

Input

- Object model (non-deformed geometry)
- Forces
 - Over whole volume (e.g., gravity)
 - Over the surface (e.g., pressure, drag)
 - Concentrated loads (e.g., poking with haptic device)

Output:

- New, deformed geometry
 - Static equilibrium
 - At each time step (dynamic)
- If using meshes, just need node displacements
- Usually assumes invariant topology (e.g., no cutting)

Input

- Object model (non-deformed geometry)
- Forces
 - Over whole volume (e.g., gravity)
 - Over the surface (e.g., pressure, drag)
 - Concentrated loads (e.g., poking with haptic device)

Output:

- New, deformed geometry
 - Static equilibrium
 - At each time step (dynamic)
- If using meshes, just need node displacements
- Usually assumes invariant topology (e.g., no cutting)

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

Spring Models

- Discretize the object into a collection of N nodes interconnected with springs
- For each node i, just using Newton's F=ma law, with some velocity-dependent damping,

Spring Models

$$F_{\rm d} = -cv = -c\dot{x} = -c\frac{dx}{dt}$$

$$F_S = -kx$$

Implementation

- (1) For each mass node, compute all external forces
 - springs interconnecting mass nodes
 - reaction forces between colliding mass nodes
 - gravitational forces
- (2) Compute Acceleration

$$a = F / m$$

(3) Update Velocity and Position through integration over time dt

$$v = v_{prev} + a dt$$

$$x = x_{prev} + v dt + \frac{1}{2} a dt^2$$

Demonstration

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

Computing Dynamics

1000 Hz

Deformable Mesh

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

Filling Sphere Approach (2D)

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations

Collision Detection

Collision detection with deformable meshes are difficult to achieve in real time due to the constant change of their geometry (constant update of the collision detection model)

- How can we compute a collision between a segment and deformable mesh?
- How can we compute collisions between deformable meshes?

Collision Segment-Mesh

- 1. Collision detection is first performed between the input segment and the collision spheres composing the skeleton of the model.
- Collision between the segment and the triangles are then searched locally

Collision Mesh-Mesh

Reaction forces are computed between mass nodes

$$F_r = -kx$$

- Introduction
- Spring Models
- Computing Dynamics in the Haptics Loop
- Filling Sphere Approach for Elastic Models
- Computing Collision Detection in Real Time
- Demonstrations