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Outline

‣ Problem definition and motivation

‣ Bounding volume hierarchies

‣ Spatial partitioning approaches

‣ Point-sampled surfaces
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Polyhedron Tests
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Polyhedron Intersection Tests

Segment-Mesh Mesh-Mesh
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Brute-Force Approach

Test segment against every primitive:  O(n) complexity

(etc)
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Brute-Force Approach

Test every pair of primitives for possible intersection:  
O(mn) complexity

(etc)
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Too Slow!

‣ Haptic rendering requires us to compute 
collisions within a millisecond time interval

‣ Typical meshes have thousands of primitives

‣ Collision detection is a search problem

- Recall what you learned in CS161

‣ Divide-and-conquer paradigm:

- We can accelerate the operation by organizing 
our geometry into a tree data structure!
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Two Approaches

‣ Bounding volume hierarchy

- Partitions the object itself into smaller chunks 
that are fit within simple geometric primitives

‣ Spatial subdivision

- Partitions the underlying space the object sits in
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Spatial Partitioning

‣ Most direct extension of a binary search 
tree to three (or more!) dimensions

‣ Partitioning is more flexible, and can cake 
different forms:

- Spatial hash (not really a tree)

- Quadtree / octree

- k-dimensional (k-D) tree

- Binary space partition (BSP) tree
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A Few Examples...
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Spatial Hashing
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Spatial Hashing

‣ Extremely easy to implement

‣ Can provide constant time collision queries 
in the ideal case

‣ How do we decide what the grid spacing 
should be?
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What about our other friend?
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Spatial Hashing Limitations
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Quadtree / Octree
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Quadtree / Octree

‣ Very simple to implement

‣ Does not make any effort to partition the 
space efficiently

‣ Has a high branching factor

‣ Can be efficient when data is uniform
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k-Dimensional Tree
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k-Dimensional Trees

‣ Binary tree that partitions space along an 
axis-aligned plane

‣ Adaptive to the characteristics of the input 
geometry (more balanced tree)

‣ Many partitioning heuristics for 
construction:

- Alternating x-y-z axes

- Equal count vs. equal volume
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Searching a k-D Tree

1

2 3
4
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What About a Segment?

???
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Binary Space Partition Tree
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Binary Space Partition Tree

‣ Allows splitting along arbitrary plane

‣ Fewer objects or primitives are “split in the 
middle”

‣ Can require more effort to construct

‣ Slightly more storage overhead than a k-D 
tree
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Spatial Partitioning Summary

‣ Different partitioning structures are 
embodiments of the same principle

‣ Supports O(log n) time query for a point 
and expected logarithmic time for a ray or 
segment

‣ Choose which one to use based on the 
characteristics of the geometry
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The (Second) Task at Hand

How do we detect collision between two 
complex meshes?
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Bounding Volume Hierarchies

‣ Similar idea to spatial partitioning, but 
break up the object instead

‣ Takes advantage of spatial coherence

‣ When objects collide, the contact set is 
generally small relative to the mesh size
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Bounding Volume Hierarchies

‣Many flavours:

- Bounding spheres

- Axis-aligned box

- Oriented box

- Polytope / convex hull

‣Allows mesh collision 
detection using one 
common algorithm
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BVH Collision Queries

‣ Rejection test:  If bounding volumes do not 
intersect, then the objects (or parts within) 
cannot intersect

‣ If bounding volumes intersect, recursively 
query all pairs of bounding volumes at the 
next hierarchy level in each object

‣ Can track and report an (approximate) 
minimum separation distance, or simply 
report interference
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SIGGRAPH 97, Los Angeles, California, August 3-8, 1997

continuously differentiable textured surfaces. Grooved or
cratered surfaces which contain sharp edges and corners may
require additional constraint planes and the monitoring of the
motion of the proxy to ensure that it is not constrained by other
surface features as it moves along the surface.

6  SYSTEM IMPLEMENTATION

Our current system runs on two computers: the haptic server
and the application client. The separation of the haptic and
application/graphic processes was first proposed by Adachi et
al. [2]. Decoupling the low-level force servo  loop from the high-
level control is important since the haptic servo loop must run
at a very high rate, typically greater than 1000Hz, to achieve a
high fidelity force display. Most application programs typically
run at a much slower rate (~30Hz).
In our system the bulk of haptic rendering effort is placed on
the haptic server, thus freeing the client machine to perform
the tasks required by the user’s application. The haptic server
receives high level commands from the client, tracks the
position of the haptic device, updates the position of the virtual
proxy, and sends control commands to the haptic device. This
arrangement places the performance bottle-neck on the haptic
server CPU rather than on the I/O channel. This is desirable
since CPU processor performance is increasing rapidly while
the latency of I/O connections has been largely stagnant. In our
current system, a SGI workstation is used as the haptic client,
a Pentium Pro PC is used as the server, and communication
between them is performed over a regular ethernet connection
via TCP/IP packets.

6.1  The Client Application
Applications communicate to the haptic server through the HL
network interface library.  The current library supports a limited
set of the functions provided by the GL graphics library. The
HL Library allows users to define objects as a collection of
primitive objects — points, line segments or polygons. Objects
are retained until over-written. Transformations are provided to
allow objects and primitives to be freely translated or rotated.
Surface normals and texture coordinates can be associated
with polygonal vertices to allow for the specification of smooth
or textured surfaces. Object hierarchies and material properties
such as friction and stiffness may also be defined.

6.2  Model Construction
Once the modeling commands are received from the client,
they must be stored in a form suitable for haptic rendering.
Vertices are transformed into local object frames and meshes
and sequences of line segments are represented as a set of
independent convex bodies.
Because each object is normally constructed from a large
number of primitives, a naive test based on checking if each
primitive is in the path of the proxy would be prohibitively
expensive. In general, the proxy’s path will be in contact with
at most a small fraction of the underlying primitives. In our
approach a hierarchical bounding representation for the object
is constructed to take advantage of the spatial coherence
inherent in the object. The bounding representation, based  on
spheres, is similar to that first proposed by Quinlan [22].
This hierarchy of bounding spheres is constructed by first
covering each polygon with small spheres in a manner similar

to scan conversion in computer graphics. These spheres are the
leaves of an approximately balanced binary tree. Each node of
this tree represents a single sphere that completely contains all
the leaves of its descendants. After covering the object, a
divide and conquer strategy is used to build the interior nodes
of the tree. This algorithm works in a manner similar to quick-
sort. First an axis aligned bounding box that contains all the
leaf spheres is found. The leaf spheres are then divided along
the plane through the mid-point of the longest axes of the
bounding box. Each of the resulting two subsets should be
compact and contain approximately an equal number of leaf
spheres. The bounding tree is constructed by recursively
invoking the algorithm on each subset and then creating a new
node with the two sub-trees as children. A cut-away view
showing the leaf nodes (yellow) and bounding sphere hierarchy
for a typical model is illustrated in Figure 8. Note that a node
is not required to fully contain all the descendant internal
nodes, only the descendant leaf nodes.

Figure 8: Cut-Away of the Bounding Hierarchy of a Cat Model

Two heuristics are used to compute the bounding sphere of a
given node. The first heuristic finds the smallest bounding
sphere that contains the spheres of its two children. The second
method directly examines the leaf spheres. The center is taken
as the mid-point of the bounding box already computed earlier.
The radius is taken to be just large enough to contain all the
descendant leaf nodes. The method that generates the sphere
with the smallest radius is used for the given node. The first
heuristic tends to work better near the leaves of the tree, while
the second method produces better results closer to the root.
This algorithm has an expected O n n( lg ) execution time,
where n is the number  of leaf spheres.

Example: Bounding Spheres

‣ One large sphere 
surrounds the mesh

‣ Geometry within is 
partitioned into two parts

‣ The structure is recursive: 
spheres enclose sub-parts

‣ Leaf spheres contain one 
triangle, a few elements, or 
a small convex component

[from D. Ruspini et al., Proc. ACM SIGGRAPH, 1997.]
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Bounding Sphere Construction

‣ Easiest intersection 
test in the book, but...

‣How do we determine 
the bounding sphere?

‣How do we partition 
the object geometry?
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Bounding Sphere Construction

‣ Building the tree is expensive and often 
done as an offline preprocessing step

‣ If you have all the time in the world...

- Try every possible partition

- Compute the tightest bounding sphere

‣ In practice, heuristics are used for 
partitioning and a “good enough” bounding 
sphere is computed
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‣ Intersection test is just 
as easy as spheres...

‣ but parititioning and 
bounding is much 
easier!

Axis-Aligned Bounding Box
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AABB Collision Detection

So why doesn’t everyone just use 
axis-aligned bounding boxes?
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Rotation Dependent!

=
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Oriented Bounding Boxes

‣ Tighter fit than spheres, axis-aligned boxes

‣ How would you orient the box?

AABB OBB
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Discrete Oriented Polytopes

‣ An even tighter fit than oriented boxes

‣ How would you do an intersection test?

24 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL.  4,  NO.  1,  JANUARY-MARCH  1998

an eight-dop, whose eight fixed normals are determined
by the orientations at ±45, ±90, ±135, and ±180 degrees.
Axis-aligned bounding boxes (in 3D) are 6-dops, with ori-
entation vectors determined by the positive and negative
coordinate axes. In this paper, we concentrate on 6-dops,
14-dops, 18-dops, and 26-dops, defined by orientations
that are particularly natural; see Section 3.3.3 for more
detail.

Researchers at IBM have used the same 18-dops (which
they call “triboxes” or “T-boxes”) for visual approximation
purposes within 3DIX [12], [13]. This idea of using planes of
fixed orientations to approximate a set of primitive objects
was first introduced in the ray tracing work of Kay and Ka-
jiya [29].

Axis-aligned bounding boxes (AABBs) are often used in
hierarchies because they are simple to compute and they
allow for very efficient overlap queries. But AABBs can also
be particularly poor approximations of the set that they
bound, leaving large “empty corners”; consider, for exam-
ple, a needle-like object that lies at a 45-degree orientation
to the axes. Using k-dops, for larger values of k, allows the
bounding volume to approximate the convex hull more
closely. Of course, the improved approximation (which
tends to lower Nv, Np, and Nu) comes at the cost of increas-
ing the cost, Cv, of testing a pair of k-dops for intersection
(since Cv = O(k)) and the cost, Cu, of updating k-dops in the
flying hierarchy (since Cu = O(k2)).

To keep the associated costs as small as possible, we
have been using only k-dops whose discrete orientation
normals come as pairs of collinear, but oppositely oriented,
vectors. Kay and Kajiya referred to such pairs as bounding
slabs [29]. Thus, as an AABB bounds (i.e., finds the mini-
mum and maximum values of) the primitives in the x, y,
and z directions, our k-dops will also bound the primitives
but in k/2 directions. This has the advantage in that our
(conservative) disjointness test for two k-dops is essentially
as trivial as checking two AABBs for overlap: we simply
perform k/2 interval overlap tests. This test is far simpler
than checking for intersection between OBBs or between
convex hulls. Further, since the k/2 defining directions are
fixed, the memory required to store each k-dop is only k
values (one value per plane), since the orientations of the
planes are known in advance.

Bounding spheres are another natural choice to ap-
proximate an object, since it is particularly simple to test
pairs for overlap, and the update for a moving object is
trivial. However, spheres are similar to AABBs in that they
can be very poor approximations to the convex hull of the
contained object. Hence, bounding spheres yield low costs
Cv and Cu, but may result in a large number, Np, of pairs of
primitives to test. Oriented bounding boxes (OBBs) can
yield much tighter approximations than spheres and
AABBs, in some cases. Also, it is relatively simple to update
an OBB, by multiplying two transformation matrices. How-
ever, the cost Cv for determining if two OBBs overlap is
roughly an order of magnitude larger than for AABBs [21].
At the extreme, convex hulls provide the tightest possible
convex bounding volume; however, both the test for over-
lap and the update costs are relatively high.

In comparison, our choice of k-dops for bounding vol-
umes is made in hopes of striking a compromise between
the relatively poor tightness of bounding spheres and
AABBs, and the relatively high costs of overlap tests and
updates associated with OBBs and convex hulls. The pa-
rameter k allows us some flexibility too in striking a balance
between these competing objectives. For moderate values of
k, the cost Cv of our conservative disjointness test is an or-
der of magnitude faster than testing two OBBs. Also, while
updating a k-dop for a rotating object is more complex than
updating some other bounding volumes, we have devel-
oped a simple approximation approach, discussed in Sec-
tion 4.1, that works well in practice.

Fig. 1 highlights the differences in some of the typical
bounding volumes. Here, we provide a simple two-
dimensional illustration of an object and its corresponding
approximations by an axis-aligned bounding box (AABB),
an oriented bounding box (OBB), and a k-dop (where k = 8).

3.3 Design Choices
Our study has included a comparison of various design
choices in constructing BV-trees, including:

1)! the degree, d, of the tree (binary, ternary, etc.);
2)! top-down versus bottom-up construction;
3)! the choice of the k-dops; and
4)! splitting rules.

      
                                           (a)                                                                  (b)                                                                   (c)

Fig. 1. Approximations of an object by three bounding volumes: an axis-aligned bounding box (AABB), an oriented bounding box (OBB), and
a k-dop (where k = 8).AABB OBB 8-DOP
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Types of Bounding Volumes

AABB OBBSphere Convex Hullk-DOP

‣ Many shapes (primitives) can be used as 
bounding volumes

‣ Choice of bounding volume has 
computational efficiency tradeoffs
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Bounding Volumes Summary

‣ Carefully crafted BVHs can facilitate fast 
mesh-mesh collision detection

‣ Choose the best variant for your geometry

‣ What is the algorithm’s time complexity...

- for typical queries?

- in the worst case?

‣ What are the implications for their use in 
haptic rendering?
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Meshless Deformations Based on Shape Matching
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ETH Zürich

Figure 1: The presented technique is stable under all circumstances and allows to simulate hundreds of deformable objects in real-time.

Abstract

We present a new approach for simulating deformable objects. The
underlying model is geometrically motivated. It handles point-
based objects and does not need connectivity information. The ap-
proach does not require any pre-processing, is simple to compute,
and provides unconditionally stable dynamic simulations.

The main idea of our deformable model is to replace energies by
geometric constraints and forces by distances of current positions
to goal positions. These goal positions are determined via a gener-
alized shape matching of an undeformed rest state with the current
deformed state of the point cloud. Since points are always drawn to-
wards well-defined locations, the overshooting problem of explicit
integration schemes is eliminated. The versatility of the approach
in terms of object representations that can be handled, the efficiency
in terms of memory and computational complexity, and the uncon-
ditional stability of the dynamic simulation make the approach par-
ticularly interesting for games.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality

Keywords: deformable modeling, geometric deformation, shape
matching, real-time simulation

1 Introduction

Since Terzopoulos’ pioneering work on simulating deformable ob-
jects in the context of computer graphics [Terzopoulos et al. 1987],

many deformable models have been proposed. In general, these
approaches focus on an accurate material representation, on stabil-
ity aspects of the dynamic simulation and on versatility in terms of
advanced object characteristics that can be handled, e. g. plastic
deformation or fracturing.

Despite the long history of deformable modeling in computer
graphics, research results have rarely been applied in computer
games. Nowadays, deformable cloth models with simple geome-
tries can be found in a few games, but in general, games are
dominated by rigid bodies. Although rigid bodies can be linked
with joints to represent articulated structures, there exist no practi-
cal solution which allows to simulate elastically deformable three-
dimensional objects in a stable and efficient way. There are several
reasons that prevent current deformable models from being used in
interactive applications.

Efficiency. Existing deformable models based on complex mater-
ial laws in conjunction with stable, implicit integration schemes are
computationally expensive. Such approaches do not allow for in-
teractive simulations of objects with a reasonable geometrical com-
plexity. Further, these approaches might require a specific object
representation and the algorithms can be hard to implement and de-
bug. In contrast, interactive applications such as games constitute
hard constraints on the computational efficiency of a deformable
modeling approach. The approach is only allowed to use a small
fraction of the available computing resources. Further, specific vol-
umetric representations of deformable objects are often not avail-
able since the geometries are typically represented by surfaces only.

Stability. In interactive applications, the simulation of deformable
objects needs to remain stable under all circumstances. While so-
phisticated approaches allow for stable numerical integration of ve-
locities and positions, additional error sources such as degenerated
geometries, physically incorrect states, or problematic situations
with large object interpenetrations are not addressed by many ap-
proaches. A first contribution to this research area has been pre-
sented in [Irving et al. 2004], where large deformations and the
inversion of elements in FE approaches can be handled in a robust
way. However, this approach is not intended to be used in interac-
tive applications.

Summary

‣ Explored methods for 
mesh collision queries:

- Spatial partitioning 
methods for segments

- Bounding volume 
hierarchies for meshs

‣Do they still work for 
deformable objects?

CS277 - Experimental Haptics, Stanford University, Spring 2014



Unstructured Point Sets
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Data Sources
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Metaball Surfaces

‣ Soft objects proposed 
by Wyvill et al. 1986

‣ Radial basis functions 
with compact support

‣ Surface is implicitly 
defined by a threshold 
on the intensity field
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Compact Support Function

‣ Define a field contribution function, C(r), 
for a given distance r from a point

‣ If the point has radius of influence R, we 
desire the function to be

- compact:

- smooth:

C(0) = 1 and C(R) = 0

C 0(0) = 0 and C 0(R) = 0
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Contribution Function

‣Domain is r ∈ [0, R]

‣ If we want the function 
to be cubic in r2, then

- with radius of influence

Contribution 
to field 

c 

0 
r ~ R 

Distance from key point 
Fig. 1. F ie ld  con t r ibu t ion  as a funct ion of d is tance  

around an atom (Blinn 1982). Our function is sim- 
ilarly shaped and has the desirable property of 
dropping to zero at the radius of influence, R. It 
is also very cheap to calculate, needing only three 
additions and five multiplications. 

3 Defining the iso-surface 
Having established a definition of the field we 
must choose a field value for the iso-surface. 
Clearly the field due to a single key point will 
be symmetrical about  the point and any iso-sur- 
face in that field will be a sphere. Suppose we 
choose a function value, magic, and plot the iso- 
surface ,connecting all points whose field value 
equals magic. Now consider the field due to two 
key points in the same place. It is still symmetrical 
and an iso-surface for value magic in this field will 
be a sphere of larger radius than the iso-surface 
in the field due to one point. We have chosen 
magic so that this larger sphere has exactly twice 
the volume of the other. 
This choice is intended to suit the modelling of 
liquids, to provide a reasonable effect when two 
droplets merge. Other choices are possible as are 
other functions for the field. Finding functions 
appropriate to particular applications is a 
research project in its own right. For our pur- 
poses, the above is used throughout. 

4 Producing the surface 
The surface defined in this way, by a collection 
of data points is very general. It is not even neces- 
sarily connected and in order to make a picture, 
we first convert it to a more tractable form. We 
have chosen to use a simple polygon mesh for this 
purpose. 

We construct the mesh in two distinct stages. 
Imagine that the part of space occupied by the 
surface is divided by a three dimensional grid into 
small cubes. First we find all the cubes which are 
intersected by the surface and then we construct 
the polygons in each cube. 
To find the cubes intersected by the surface with- 
out scanning the whole of a large three dimen- 
sional grid, we take advantage of the knowledge 
that all our key points are enclosed by some part 
of the surface. For  each key point, starting at the 
nearest grid point, we calculate the field at a suc- 
cession of adjacent grid points along one axis 
until we encounter a point whose field value is 
less than magic. This point and the previous one 
form the endpoints of one edge of a cube which 
is intersected by the surface. This process gives 
us a set of 'seed'  cubes such that every discon- 
nected component of the surface intersects at least 
one seed cube. 
Each seed cube shares faces with six neighbours. 
Starting at the seed cubes, we examine each cube's 
neighbours to see whether or not it is intersected 
by the surface. If a neighbour is intersected then 
we look at its neighbours and so on until all of 
the cubes intersected by the surface have been 
found. This completes the first stage. 
In the second stage, we have only to deal with 
cubes which are intersected by the surface. For  
each cube we have eight values which are the field 
values at its vertices. From these we construct a 
set of polygons which are part of the iso-surface. 
The previous stage has sorted out all the cubes 
intersected by the surface, so when we put these 
polygons together we have a representation of the 
surface. 
To complete the description we must explain the 
data structure used in the first stage and the logic 
used in the second. 

5 Data structure 
There are two distinct problems each handled by 
a structure using a hash table. 

5.1 Fast evaluation of f ield values 

The first problem is to be able to calculate the 
field value at any point efficiently. This is solved 
using the structure shown in Fig. 2. 

229 
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[from G. Wyvill et al., The Visual Computer, 1986.]
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Metaball Implicit Surface

‣ The field function is defined by

‣ And the implicit surface by

‣ How many points do we need to consider 
to evaluate the surface function at x?

f(x) =
nX

i

C (kx� pik, Ri)

S(x) = T � f(x) = 0
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Surface Threshold
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Choosing a Threshold

Fig. 2. The radial basis functions used to weight the strength of each point
have the useful property that f(r > R) = 0, and f ′(0) = f ′(R) = 0.

In either case, we need a method to weight the contribution
from local points to the computation of the implicit surface.
For this purpose, we use a compactly supported radial
function as described below.

A. Point Weighting Using Radial Basis Functions

At each haptic update we estimate the local surface near
the haptic proxy. We assume that this can be estimated
from points in a small neighborhood, and we weight the
contribution from each point based on its distance to the
query location. A physically motivated function with infinite
support, such as an inverse-square, is generally avoided
because it is computationally expensive and does not allow
for efficient spatial partitioning. Instead, we use functions
with compact support, that is, they are non-zero only on the
range [0, R], where R is picked as described in section III-D.

We explored the soft-objects function C(r) described by
Wyvill [13] and the Wendland function ψ3,1(r) in [12],
referred to here as simply ψ(r).

C(r) = 1−
4

9
r6 +

17

9
r4 −

22

9
r2 (Wyvill) (1)

ψ(r) = (1− r)4(4r + 1) (Wendland) (2)

As shown in Figure 2, these functions have the useful
property that f(r > R) = 0, and f ′(0) = f ′(R) = 0. In
this way we are assured that moving incrementally closer
to new points will smoothly increase their weight and avoid
any sharp jumps in the calculation of the scalar field. In
the remainder of this paper we will use w(x) as a generic
reference to any weighting function at the position x.

B. Metaball Surface Representation

We motivate a metaball surface representation by assum-
ing that points in the cloud represent an occupied region
of space, with some probability function w(x). Regions in
space near many points will have a high probability of being
occupied, so we want to prevent movement through regions
wherein the probability exceeds some chosen threshold.
Formally, the haptic surface is an isosurface on probability;
the size of the isosurface depends on the maximum radius
R of the support function and the threshold value, T , as
illustrated in Figure 3.

The gradient of a single metaball at location pi is
x−pi

||x−pi||
wi(x), but we use the negative of this since, by con-

vention, the gradient of an implicit surface points outward.

R = 1.0 R = 1.4 R = 1.8

T=0.2

T=0.6

T=1.0

Fig. 3. A uniform line of points with the resultant metaball isosurface
is shown for various values of radius R and threshold T . A mid-value
threshold and a large radius provide the best smoothness at the cost of
reduced sensitivity to sharp, high-frequency features in the cloud. The dark
dots are points, the red region is the isosurface, and the light circles are the
finite radii of the weighting function for each point.

The net implicit function, f(x), and gradient, ∇f(x), are:

f(x) = T −
∑

i

wi(x) (3)

∇f(x) = −
∑

i

(

x− pi

||x− pi||
wi(x)

)

(4)

In the graphics literature this is frequently referred to as a
metaball equation, and is often used in fluid simulations or
other situations that call for smooth constructive geometry.
This smoothness is highly desirable for haptic rendering,
yet we note that the results can be somewhat wavy or
bumpy, depending on parameters and noise. We regard this
as a benefit for certain applications wherein the points are
relatively sparse and are used as constructive geometry.
However, if the point data are sampled from the surfaces of
objects and we know or can reliably compute the appropriate
surface normal, we use the representation described in the
following section.

C. Point-Set Surface Representation

Raytracing of point data has been well explored for pro-
ducing images, and we observe that the resulting equations
can be used for haptics as well. We choose to use the method
in [1] because it is simpler and more efficient than MLS.

For a given query location, x, we define the weighted
average a(x) of the point positions pi, and the weighted
average n(x) of the point normals.

a(x) =

(

∑

i

ωipi

)

/

(

∑

i

ωi

)

(5)

n(x) =

(

∑

i

ωini

)

/

(

||
∑

i

ωini||

)

(6)

Then the implicit equation and gradient are:

f(x) = n(x)T (x− a(x)) (7)

∇f(x) ≈ n(x) (8)

In words, f(x) tells us whether a given point in space lies
‘above’ or ‘below’ a(x) along the normal direction. This
method acts as a better low-pass filter than the metaball
approach, minimizing bumps in the rendered surface.

5002

[from A. Leeper et al., Proc. IEEE Intl. Conf. on Robotics and Automation, 2012.]
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Choosing a Threshold
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Metaball Surfaces

‣ Metaballs are good for

- Results of fluid simulation

- Noisy data

- Sparsely sampled data

‣ Can you think of types of point data that a 
metaball surface would poorly represent?
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Limitations with Metaballs
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Point Set Surfaces

‣Approximates a smooth 
surface from irregularly 
sampled points

‣Create a local estimate 
of the surface at every 
point in space

‣ Test for intersection 
with the approximation

[from M. Alexa et al., IEEE Trans. on Visualization and Computer Graphics 9(1), 2003.]
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Estimating Surface Position

‣ Weighted average of nearby points

‣ If we are at position x, estimate a point on 
the surface at

- where θ is a weighting function of distance

a(x) =

nP
i
✓i(kx� pik)pi

nP
i
✓i(kx� pik)
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Estimating Surface Normal

‣ Direction of smallest weighted covariance 
of nearby points

‣ If the weighted covariance is expressed as

‣ Then the surface normal direction is

�2
n(x) =

nP
i
✓i(kx� pik) (n · (x� pi))

2

nP
i
✓i(kx� pik)

min
n

�n(x)
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Point Set Implicit Surface

‣ We can now define the surface by the 
implicit function

‣ This surface approximates the original 
shape if it was well-sampled with points

- i.e. If the normals are well-defined within a 
neighborhood of the surface 

S(x) = n(x) · (x� a(x)) = 0
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Point Set Implicit SurfaceAdamson & Alexa / Approximating and Intersecting Surfaces from Points

reasons of clarity we first describe a slightly simplified ver-
sion of the definition. We feel this makes the connection to
the sampling criterion and the resulting properties easier to
establish. The more general surface definition is given later
together with an algorithm that computes ray surface inter-
sections.

The main tools for the definition of the surface are
weighted averages and weighted co-variances of the points
in a tubular neighborhood around the surface. A weight func-
tion θ : R → R specifies the influence of a point pi using the
euclidean distance, i.e. θi(x) = θ(‖pi − x‖). Weight func-
tions are assumed to be smooth, positive, and monotonically
decreasing (have negative first derivative).

The weighted average of points at a location s in space is

a(s) =
∑N−1

i=0 θi(s)pi

∑N−1
i=0 θi(s)

(1)

and the weighted co-variance at s in direction n describes
how well a plane n(s−x) = 0 fits the weighted points:

σ2
n(s) =

∑N−1
i=0 θi(s)(n(s−pi))2

∑N−1
i=0 θi(s)

(2)

Let σ(s) be the vector of weighted co-variances along the
directions of the canonical base

σ(s) =




σ(1,0,0)(s)
σ(0,1,0)(s)
σ(0,0,1)(s)



 (3)

then the major axes (i.e. directions of smallest and largest
weighted co-variance at a point s) are accessible as the eigen-
vectors of the bilinear form

Σ(s) = σ(s)σ(s)T (4)

where an eigenvalue is the co-variance along the direction of
the associated eigenvector.

Our computation and definition of the surface mainly de-
pends on local frames, which are built from locally estimated
normals.

Definition 1 The normal direction n(x),x ∈ R3 (or normal
for short) is defined as a direction of smallest weighted co-
variance, i.e. minn σ2

n(x). If n is unique the normal is well-
defined.

It is clear that the normal in x is given as the eigenvector
of the co-variance matrix Σ(x) corresponding to the smallest
eigenvector. The normal is well-defined exactly if Σ(x) has
an eigenvalue that is strictly smaller than all other eigenval-
ues.

We define the surface implicitly based on normal direc-
tions and weighted averages. The implicit function f : R3 →
R describes the distance of a point x to the weighted average
a(x) projected along the normal direction n(x):

f (x) = n(x) · (a(x)−x) (5)

x

n n(x-p)

a(x) f
S

(x)q
l

Figure 1: The surface is defined implicitly as the zero set
of a function f (x). In each point x a local normal direction
n(x) is estimated as the direction of minimal weighted co-
variance. The implicit function f (x) describes the distance
of a weighted average a(x) of the points along normal direc-
tion.

As always, the approximated surface is defined as the zero-
set of the implicit function, i.e.

S = {x : f (x) = 0} (6)

We know from differential geometry that S is a smooth
differentiable manifold if f is a smooth function with non-
zero gradient at least in an ε-tubular neighborhood around
the zero-set (this a generalization of the inverse function the-
orem in calculus14, 25). Requiring f to be smooth leads to a
surprisingly simple and natural sampling criterion:

Definition 2 A surface S is well-sampled with points {pi}
and approximated by S if the normals are well-defined in-
side a neighborhood around S that encloses the zero-set of
f .

We will show that this condition is sufficient for f being
smooth for points x inside the tubular neighborhood: First
note that f is a smooth function in a and n. If all weight func-
tions are smooth, the weighted average a and the weighted
co-variance matrix are smooth functions in x. Furthermore,
eigenvalues are smooth functions in the matrix coefficients
and eigenvectors are the solution of a linear system in the
eigenvalues and the matrix. Since the normal direction is de-
fined as the eigenvector corresponding to the smallest eigen-
value, n(x) is smooth in x as long as one eigenvector is
always associated with the smallest eigenvalue. This has
to be the case if the smallest eigenvalue is always strictly
smaller than all other eigenvalues, i.e., if all normals are
well-defined.

Note that it is no surprise (from a differential geometry
point of view) that a well defined normal field defines a sur-
face. The main point here is that the definition of normals

c© The Eurographics Association 2003.
232

[from A. Adamson & M. Alexa, Proc. Eurographics Symp. on Geometry Processing, 2003.]
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Choosing a Weighting Function
Adamson & Alexa / Approximating and Intersecting Surfaces from Points

Figure 5: Cyberware’s Rabbit, consisting of 67,038 points, ray traced to images with 200x400 pixels using different Gaussian
weighting functions. If the radius of the weights becomes too small, the surface is effectively undersampled w.r.t. to the weighting,
thus, illustrating the effect of insufficient sampling density. Values for the parameter h relative to the objects diameter from left
to right: 1.7%, 0.375%, 0.22%, 0.19%, 0.17%.

Precision (h) 10−1 10−3 10−7 10−10 10−11

Avg. Iter. 1.99 2.91 4.98 6.56 10.4
Time (sec) 7.9 11.5 18.9 24.6 42.7

Table 1: Average number of iterations until convergence to
a ray surface intersection and time needed to render an im-
age at resolution of 200x400 pixels relative to the required
precision.

numerical breakdown of the procedure, possibly due to the
eigenvector computation. This explains the superlinear num-
ber of iterations and computation time in the last column of
the table.

7. Conclusions

We have presented a surface approximation technique that
is based on an iterative ray-surface intersection algorithm.
The definition of the surface allows deriving an intuitive cri-
terion for sufficient sampling given a weighting function for
the points. As the surface is defined by the ray intersection
algorithm, ray tracing is a natural way to render the sur-
face. Compared to ray tracing point set surfaces1 our new
approach is two orders of magnitude faster. It is comparable
in speed to Schaufler & Jensen’s approach48, however, using
a solid surface definition.

We admit that our formulation of the sampling criterion
has several loose ends and that we are far from having a
solid theory, nevertheless, we felt the results are useful and
interesting. In particular, a qualitative and quantitative com-
parisons between the sampled surface S, the reconstruction
we propose S, and reconstructions with other methods are

missing. From a practical perspective, important next steps
are the definition of weights from a given smooth surface
and the minimal extent of the tubular neighborhood. This
would make the sampling criterion sufficient, yet still not
very practical: One could only decide that a surface is not
well-sampled by finding a point inside the neighborhood
with undefined normal, which is very unlikely. Rather, we
need conditions that necessarily lead to sufficient sampling
(possibly accepting some oversampling).
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If you want to learn more...
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Summary

‣ Point sets can be haptically rendered as 
implicit surfaces

‣ We examined two methods of formulation:

- Metaballs (a.k.a. blobs, soft objects)

- Point-sampled surface reconstruction
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