CS277 - Experimental Haptics Lecture 4

Implicit Surfaces & Friction

Outline

- Announcements
- Implicit surface rendering algorithm
- Rendering friction
- Rendering volumetric data (if I have time)

Office Hours

- Democracy worked! (?)
 - Mondays, 4-6pm, Clark E100 (Sonny)
 - Tuesdays, 4-6pm, Gates Al lab (François)
 - Thursdays, 2-4pm, Clark E100 (Sonny)
 - Fridays, 2-4pm, Gates Al lab (François)
- Will post times to course page and piazza

Haptic Devices

- We are now in stock!
- Pick up after class today, or during Thursday/Friday office hours
- Clark Center E1.3 (Salisbury Robotics)

Implicit Surfaces

Rendering Implicit Surfaces

A surface defined by an implicit equation:

-
$$S(x, y, z) = 0$$

Can be rendered using the same proxybased algorithm.

Review: Implicit Surfaces

"Graph" the equation, as you learned how to do in high school...

The Landscape

Step I: Detecting Collision

How do we detect the first contact with the object?

Step 2: Finding a Surface Point

- Once contact is made, we need to keep track of a point on the surface
- First, how do we find this point?

The Gradient

$$\nabla S(x,y) = \begin{pmatrix} \frac{\partial S}{\partial x} \\ \frac{\partial S}{\partial y} \end{pmatrix}$$

Direction to the Surface

$$-S(x,y)\nabla S(x,y)$$

The "Seeding" Algorithm

- Given a seed point, find the nearest point on the surface (within a certain tolerance)
- Exploit the condition that the seed is known to start close to the surface

$$\mathbf{p} \leftarrow \mathbf{p}_{seed}$$
do
$$\delta \mathbf{p} \leftarrow -\frac{S(\mathbf{p})\nabla S(\mathbf{p})}{\nabla S(\mathbf{p}) \cdot \nabla S(\mathbf{p})}$$

$$\mathbf{p} \leftarrow \mathbf{p} + \delta \mathbf{p}$$
until (||\delta \mathbf{p}|| < \epsilon)

Step 3: Tracking the Surface Point

- As the device moves, we need to update our surface point, subject to constraints
- What are these constraints?
- Can we use the seeding algorithm again?

Constrained by a Plane

- We have a point on the surface...
- We have the surface normal (gradient)...
- The answer is to use a tangent plane!

Surface Tracking

One time step: Is p the nearest surface point?

Surface Tracking

One more time step: A lot closer now!

Step 4: Breaking Contact

How do we know when to stop tracking?

Tangent to the Rescue

Contact is broken when q moves to the outside of the constraining plane (same direction as normal).

Incorrect Break?

What happens here?

Summary

- The full implicit surface rendering algorithm:
 - Detect initial contact when S(p) < 0
 - Find surface point using initial point as seed
 - Update the surface point as the device moves by using the tangent plane as a constraint
 - Contact breaks when device is moved outside the constraining plane
- Repeat from start...

Potential Limitations

- Can this algorithm handle thin objects?
- ▶ A limit cycle?!

Implicit Surface Demo

Friction

Coulomb Friction

Friction force proportional to normal force

$$F_f = \mu F_N$$

Static (sticking) friction:

$$F_s \le \mu_s F_N$$

Kinetic (sliding) friction:

$$F_k = \mu_k F_N$$

Rendering Friction

Basic case: $\mu = \mu_s = \mu_k$ avatar $F_N = -F_c$ surface F_c

Rendering Friction

Rendering Friction

Friction Cone

Friction Cone in 3D

Static & Kinetic Friction

Coulomb Friction

- Friction force proportional to normal force
- Construct friction cone(s) from coefficents
- Can render effects of static and kinetic friction, and in general $\mu_s \geq \mu_k$
- When do we switch between static and kinetic friction cones?

Friction Demo

Volumetric Isosurfaces

Volume Rendering

- Implicit representations are now uncommon, but...
- ▶ 3D medical imaging (CT, MRI, etc.) has resulted in an abundance of volume data
- Can be rendered with (almost) the same algorithm!

Sampled Volume Data

- Image values sampled on rectilinear grid
- CT scans measure radiodensity Hounsfield Units

Implicit Representation

We only have samples at integer locations:

$$I(x, y, z) = v_{\text{samp}}$$
 for $x, y, z \in \mathbb{Z}$

How do we create a continuous implicit function, S(x, y, z)?

Interpolation

What's the value here?

$$F(x,y) = (1 - x + \lfloor x \rfloor)(1 - y + \lfloor y \rfloor) I(\lfloor x \rfloor, \lfloor y \rfloor)$$

$$+ (x - \lfloor x \rfloor)(1 - y + \lfloor y \rfloor) I(\lceil x \rceil, \lfloor y \rfloor)$$

$$+ (1 - x + \lfloor x \rfloor)(y - \lfloor y \rfloor) I(\lfloor x \rfloor, \lceil y \rceil)$$

$$+ (x - \lfloor x \rfloor)(y - \lfloor y \rfloor) I(\lceil x \rceil, \lceil y \rceil) for x, y, z \in \mathbb{R}$$

Interpolation Functions

nearest linear sinc

Isocontours & Isosurfaces

Choose a threshold value, T, to determine surface function: S(x, y, z) = T - F(x, y, z)

T = -600 HU T = 300 HU

Isosurfaces in 3D

CS277 - Experimental Haptics, Stanford University, Spring 2014

Rendering Algorithm

 Our implicit surface rendering algorithm has two specific requirements:

- Inside-outside function for S(p)

$$S(x, y, z) = T - F(x, y, z)$$

The gradient of S(p)

$$\nabla S(x, y, z) = ???$$

Central Differencing

Estimate gradient using central difference:

$$\nabla S(x,y) = \begin{pmatrix} \frac{\partial S}{\partial x} \\ \frac{\partial S}{\partial y} \end{pmatrix} \approx \begin{pmatrix} \frac{S(x+\delta,y)-S(x-\delta,y)}{2\delta} \\ \frac{S(x,y+\delta)-S(x,y-\delta)}{2\delta} \end{pmatrix}$$

• What's the best choice for the δ value?

Recap Again, Issues?

- The full isosurface rendering algorithm:
 - Detect initial contact when S(p) < 0
 - Find surface point using initial point as seed
 - Update the surface point as the device moves by using the tangent plane as a constraint
 - Contact breaks when device is moved outside the constraining plane
 - Repeat from start...

Demo?

Summary

- Implicit surface rendering algorithm
- Rendering friction
 - Static and kinetic varieties
 - Friction cone
- Rendering volumetric data
 - Using a variant of the implicit surface algorithm